欢迎来到天天文库
浏览记录
ID:12843552
大小:294.00 KB
页数:4页
时间:2018-07-19
《用洛必达法则巧解导数问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、才智在线在线才智才智在线才智在线应用洛必达法则巧解导数问题.近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为了热点.许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数法,一部分题用这种方法很奏效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有一条路——分类讨
2、论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.洛必达法则:设函数、满足:(1);(2)在内,和都存在,且;(3)(可为实数,也可以是).则.(可连环使用)注意使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。已知函数,曲线在点处的切线方程为.(Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围.(Ⅰ)略
3、解得,.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知,所以所以.考虑函数,则才智在线在线才智才智在线才智在线才智在线在线才智才智在线才智在线(i)当时,由知,当时,.因为,所以当时,,可得;当时,,可得,从而当且时,,即;(ii)当时,由于当时,,故,而,故当时,,可得,与题设矛盾.(iii)当时,,而,故当时,,可得,与题设矛盾.综上可得,的取值范围为.常规解法注:分三种情况讨论:①;②;③不易想到.尤其是②时,许多考生都停留在此层面,举反例更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.运用洛必达和导
4、数解2011年新课标理当,且时,,即,也即,记,,且则,记,则,从而在上单调递增,且,因此当时,,当时,;当时,,当时,,所以在上单调递减,在上单调递增.注:本题由已知很容易想到用分离变量的方法把参数分离出来.然后对分离出来的函数求导,研究其单调性、极值.此时遇到了“当时,函数值没有意义”才智在线在线才智才智在线才智在线才智在线在线才智才智在线才智在线这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.当然这一法则出手的时机:(1)所构造的分式型函数在定义域上单调(2)是型。运用洛必达和
5、导数解2010新课标理设函数.(Ⅰ)若,求的单调区间;(Ⅱ)当时,,求的取值范围.解:(Ⅱ)当时,,即.①当时,;②当时,等价于.记,则.记,则,当时,,所以在上单调递增,且,所以在上单调递增,且,因此当时,,从而在上单调递增.由洛必达法则有,即当时,,所以当时,所以,因此.综上所述,当且时,成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:①可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“”型式子.才智在线在线才智才智在线才智在线才智在线在线才智才智在线才智在线才智在线在线才智才智在线才智在线
此文档下载收益归作者所有