浅谈数形结合思想在小学数学教学中的渗透

浅谈数形结合思想在小学数学教学中的渗透

ID:1233982

大小:459.00 KB

页数:9页

时间:2017-11-09

浅谈数形结合思想在小学数学教学中的渗透_第1页
浅谈数形结合思想在小学数学教学中的渗透_第2页
浅谈数形结合思想在小学数学教学中的渗透_第3页
浅谈数形结合思想在小学数学教学中的渗透_第4页
浅谈数形结合思想在小学数学教学中的渗透_第5页
资源描述:

《浅谈数形结合思想在小学数学教学中的渗透》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈数形结合思想在小学数学教学中的渗透摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思

2、想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往

3、往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。  一.了解小学数学教材中蕴涵的主要数学思想方法数学思想:符号思想,集合思想,对应思想,化归思想。数学方法:(1)思维方法:分析、综合、抽象、概括、归纳、演绎(2)  一般方法:观察、实验、比较、分类、联想、类比、化归、猜想(3)数学特点较强的方法:函数法、数学模型法、数形结合法、统计法、变换法

4、、分析法、综合法(4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、二、“数形结合”,由来已久  早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形中的几何关系描述成代

5、数关系。  这些都说明了“数形结合”思想有着悠久的历史。在小学数学教学中,我们虽还用不到这种高深的数学知识,却也在低年级“数的认识”中就接触到了数形结合这个思想。以形助数——借助形的生动和直观来阐明数与数之间的联系,以形为手段,数为目的,比如:运用同数相加的图像来直观地说明乘法的意义。以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质,以数为手段,形为目的,比如:一个特定的数字可以代表任何达到这个数量的事物。(3可以代表达到3这个数量的苹果、衣服、车子……)数形结合就是根据数学问题的条件与结论之间的内在联系,既分

6、析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。三、“数形结合”,教学实施情况数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂教学过程中。我们利用数形结合引进新知,建构概念,解决问题,用数学思想和数学方法去激发学习兴趣,提高数学能力,可为学生以后的学习、工作打下坚实的基础。〈

7、1〉“数形结合”,教学应用1.小学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类慢慢的发展成为用形象的符号记事,最后才有了数字。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。例如:中年级学生学习“求比一个数的几倍还多几(少几)”的应用题时,学生对“几倍多几”或“几倍少几”较难理解,为突破这个教

8、学难点,我设计了右面的图形:  结合图形,让学生说:有6个□,△的个数比□的3倍还多4个;也可以说:有6个□,△的个数比□的4倍少2个;接着,出示下面的问题:  (1)□有6个,△比□的3倍多4个,△有多少个?  算式:6×3+4=22个  (2)□有6个,△比□的4倍少2个,△有多少个?  算式:6×4-2=22个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。