欢迎来到天天文库
浏览记录
ID:23137258
大小:459.50 KB
页数:10页
时间:2018-11-04
《浅谈数形结合思想在小学数学教学中的渗透》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方浅谈数形结合思想在小学数学教学中的渗透摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更
2、易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时
3、候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。 一.了解小学数学教材中蕴涵的主要数学思想方法数学思想:符号思想,集合思想,对应思想,化归思想。数学方法:(1)思维方法:分析、综合、抽象、概括、归纳、演绎(2) 一般方法:观察、实验、比较、分类、联想、类比、化归、猜想(3)数学特点较强的方法:函数法、数学模型法、数形结
4、合法、统计法、变换法、分析法、综合法(4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方二、“数形结合”,由来已久
5、早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形中的几何关系描述成代数关系。 这些都说明了“数形结合”思想有着悠久的历史。在小学数学教学中,我们虽还用不到这种高深的数学知识,却也在低年级“数的认识”中就接触到了数形结合这个思想。以形助数——借助形的生动和直观来阐明数与数之间的联系,以形为手段,数为目的,比如:运用同数相加的图像来直观地说明乘法的意义。以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质,
6、以数为手段,形为目的,比如:一个特定的数字可以代表任何达到这个数量的事物。(3可以代表达到3这个数量的苹果、衣服、车子……)数形结合就是根据数学问题的条件与结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起。如果把抽象的数学知识与具体的图形结合起来,挖掘和利用概念中的直观成分,充分利用这种结合,寻找解题思路,就能有效降低教学难度,使问题化难为易,化繁为简,从而得到解决。三、“数形结合”,教学实施情况数形结合思想是数学的本质之一,是数学教学的精髓,在教学过程中应用广泛,贯穿、融合在课堂
7、教学过程中。我们利用数形结合引进新知,建构概念,解决问题,用数学思想和数学方法去激发学习兴趣,提高数学能力,可为学生以后的学习、工作打下坚实的基础。〈1〉“数形结合”,教学应用1.小学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类慢慢的发展成为用形象的符号记事,最后才有了数字。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。
8、例如:中年级学生学习“求比一个数的几倍还多几(少几)”的应用题时,学生对“几倍多几”或“几倍少几”较难理解,
此文档下载收益归作者所有