《数学分析》考试大纲

《数学分析》考试大纲

ID:11682047

大小:61.00 KB

页数:5页

时间:2018-07-13

《数学分析》考试大纲_第1页
《数学分析》考试大纲_第2页
《数学分析》考试大纲_第3页
《数学分析》考试大纲_第4页
《数学分析》考试大纲_第5页
资源描述:

《《数学分析》考试大纲》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、《数学分析》考试大纲一、考试的性质数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。为帮助考生明确考试范围和有关要求,特制订出本考试大纲。本考试大纲主要根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。二、考试内容和基本要求1.实数集与函数(1)确界概念,确界原理(2)函数概念与运算,初等函数要求:理解确界概念与确界原理,并能运用于有关命题的运算与证明。深刻理解函数的意义,掌握函数的四则运算。2

2、.数列极限(1)数列极限的ε一N定义(2)收敛数列的性质(3)数列的单调有界法则,柯西收敛准则,重要极限要求:深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。3.函数极限(1)函数极限的ε一M定义和ε一δ定义,单侧极限(2)函数极限的性质(3)海涅定理(归结原则),柯西收敛准则,两个重要极限(4)无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较要求:理解各

3、类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。4.函数的连续性(1)函数在一点连续,单侧连续和在区间上连续的定义,间断点的类型(2)连续函数的局部性质。复合函数的连续性,反函数的连续性。闭区间上连续函数的性质。(3)一致连续的定义,初等函数的连续

4、性要求:深刻理解函数连续性概念,掌握间断点的概念及分类;掌握连续函数的局部性质以及复合函数和反函数的连续性,掌握闭区间上连续函数的性质;理解函数在区间上一致连续概念,并能用定义验证给定函数在某区间上为一致连续或非一致连续。5.导数与微分(1)导数的定义,导数的几何意义(2)导数四则运算、反函数导数、复合函数导数,求导法则与求导公式(3)参数方程所确定的函数的导数,高阶导数(4)微分概念、微分基本公式,微分法则,一阶微分形式的不变性。微分在近似计算中的应用,高阶微分要求:深刻理解导数概念,并能用定义求某些函数在一点的导数,清楚可导与连续的关系;掌握求

5、导法则与技巧,能熟练地用它们计算可导函数的导数;理解可微性概念,并能用于近似计算。理解高阶导数的概念,掌握计算方法。掌握参数方程所确定函数的求导方法。6.微分中值定理及其应用(1)费马定理,罗尔定理,拉格朗日定理(2)柯西中值定理,罗比达法则,不定式极限(3)泰勒公式(4)函数的单调性、凸性与拐点、极值与最值(5)渐近线,函数作图。要求:深刻理解中值定理的分析意义与几何意义,会证明中值定理,学会用作辅助函数证明问题的方法。会用中值定理论证问题;熟练掌握罗比达法则,并能迅速准确地计算出各种不定式极限;理解泰勒定理的内容与意义,会用泰勒公式解题;掌握应

6、用导数研究函数单调性、极值和凹凸性的方法。知道描绘函数图象的步骤和方法。7.实数的完备性(1)区间套定理,柯西收敛准则,聚点定理,有限覆盖定理,致密性定理(2)闭区间上连续函数的性质及证明要求:理解描绘实数完备性的几个定理的意义,并能运用它们论证一些理论问题。掌握闭区间上连续函数的性质和有关命题证明的技巧。8.不定积分(1)原函数与不定积分的概念,基本积分表,线性运算法则(2)换元积分法,分部积分法(3)有理函数的积分法。可化为有理函数的某些类型函数的积分要求:掌握原函数与不定积分概念、不定积分的运算法则;掌握换元积分法与分部积分法、分解有理函数为

7、部分分式的方法;掌握某些可有理化函数的不定积分的求法。9.定积分(1)定积分的概念,牛一莱定理(2)可积的必要条件,达布上下和,可积的充要条件,可积函数类(3)定积分的性质:线性性质,区间可加性,单调性,绝对可积性,积分第一、第二中值定理(4)微积分学基本定理。换元积分法与分部积分法。泰勒公式的积分型余项要求:深刻理解定积分的概念与意义。理解可积分的必要条件、充要条件,初步掌握判断函数是否可积的基本方法;熟练掌握定积分的性质,并能用它证明某些有关问题;深刻理解微积分学基本定理的意义,并具有应用它证明有关定积分问题的能力;熟练掌握与应用牛一莱公式,熟

8、练掌握计算定积分的基本方法和技巧。10.定积分的应用(1)平面图形之面积,由截面之面积求立体体积(2)平面曲线的弧长与曲率

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。