欢迎来到天天文库
浏览记录
ID:10186906
大小:671.00 KB
页数:9页
时间:2018-06-12
《浙江省严州中学新安江校区2016届高三1月阶段测试试题数学(理)试题带答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、严州中学2016届高三1月阶段测试数学(理科)试卷一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角是A.B.C.D.正视图侧视图俯视图5343(第2题图)2.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于A.10cm3B.20cm3C.30cm3D.40cm33.已知为异面直线.对空间中任意一点,存在过点的直线A.与都相交B.与都垂直(第2题C.与平行,与垂直D.与都平行4.为得到函数的图象,只需将函数的图象A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.已知为上的函数
2、,其中函数为奇函数,函数为偶函数,则A.函数为偶函数B.函数为奇函数C.函数为偶函数D.函数为奇函数6.命题“,或”的否定形式是A.,或B.,或PxAQFyO(第7题图)lC.,且D.,且7.如图,A,F分别是双曲线的左顶点、右焦点,过F的直线l与C的一条渐近线垂直且与另一条渐近线和y轴分别交于P,Q两点.若AP⊥AQ,则C的离心率是·9·A.B.C.D.8.已知函数,且,.A.若,则B.若,则C.若,则D.若,则非选择题部分(共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹
3、的签字笔或钢笔描黑。二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。9.若集合,,则_______,_______.10.已知单位向量满足.若,则_______,_______.11.已知等比数列的公比,前项和为.若成等差数列,,则_______,_______.12.设,实数满足若的最大值是0,则实数=_______,的最小值是_______.13.若实数满足,则_______.14.设A(1,0),B(0,1),直线l:y=ax,圆C:(x-a)2+y2=1.若圆C既与线段AB又与直线l有公共点,则实数a的取值范围是________.15.已知函数
4、,,且.记为在上的最大值,则的最大值是_______.三、解答题:本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤。16.(本题满分14分)在中,内角所对的边分别是.已知,边·9·上的中线长为4.(Ⅰ)若,求;(Ⅱ)求面积的最大值.ABDCP(第17题图)17.(本题满分15分)在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=.(Ⅰ)证明:BD⊥平面PAC;(Ⅱ)若二面角A-PC-D的大小为60°,求AP的值.18.(本题满分15分)已知函数,其中,.记为的最小值.(Ⅰ)求的单调递增区间;(Ⅱ)求的取值范围,使得存在,满
5、足.19.(本题满分15分)已知为椭圆上两个不同的点,为坐标原点.设直线的斜率分别为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.·9·(第19题图)20.(本题满分15分)已知数列满足,.(Ⅰ)证明:数列为单调递减数列;(Ⅱ)记为数列的前项和,证明:.数学(理科)参考答案一、选择题:本题考查基本知识和基本运算。每小题5分,满分40分。1.C2.B3.B4.D5.A6.D7.D8.D二、填空题:本题考查基本知识和基本运算。多空题每题6分,单空题每题4分,满分36分。9.,10.2,11.2,12.4,13.214.[,]15.2三、解答题:本大题共5小题,共74分。16.本题
6、主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力。满分14分。(Ⅰ)由及正弦定理得·9·,.........1分所以,故,.........3分所以,由余弦定理得,解得..........6分(Ⅱ)由知,及,解得..........8分所以的面积..........10分由基本不等式得,.........13分当且仅当时,等号成立.所以面积的最大值为..........14分17.本题主要考查空间线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。满分15分。ABDCOP(第17题图)HE(Ⅰ)设O为AC与BD的交点
7、,作DE⊥BC于点E.由四边形ABCD是等腰梯形得CE==1,DE==3,.........3分所以BE=DE,从而得∠DBC=∠BCA=45°,.........5分所以∠BOC=90°,即AC⊥BD..........6分由PA⊥平面ABCD得PA⊥BD,所以BD⊥平面PAC..........7分方法一:(Ⅱ)作OH⊥PC于点H,连接DH.由(Ⅰ)知DO⊥平面PAC,故DO⊥PC.·9·所以PC⊥平面DOH,从而得PC⊥OH,PC⊥DH.故∠DHO是二面角A-PC-D的平面角,所以∠DHO=60°......
此文档下载收益归作者所有