故障诊断技术part6基于小波变换的故障诊断方法2

故障诊断技术part6基于小波变换的故障诊断方法2

ID:9983703

大小:969.51 KB

页数:123页

时间:2018-05-12

故障诊断技术part6基于小波变换的故障诊断方法2_第1页
故障诊断技术part6基于小波变换的故障诊断方法2_第2页
故障诊断技术part6基于小波变换的故障诊断方法2_第3页
故障诊断技术part6基于小波变换的故障诊断方法2_第4页
故障诊断技术part6基于小波变换的故障诊断方法2_第5页
资源描述:

《故障诊断技术part6基于小波变换的故障诊断方法2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六章基于小波变换的故障诊断方法小波变换的基本原理奇异性的检测基于小波变换的原油管道泄漏检测一、小波变换的基本原理小波变换是由法国理论物理学家Grossmann与法国数学家Morlet共同提出的。小波分析是近20多年来发展起来的新兴学科,其基础是平移和伸缩下的不变性,这使得能将一个信号分解成对空间和尺度的独立贡献,同时又不丢失原有信号的信息。小波的由来小波变换是一种能够在时间-频率两域对信号进行分析的方法,具有可以对信号在不同范围、不同的时间区域内进行分析,对噪声不敏感,能够分析到信号的任意细节

2、等优点,在信号处理领域获得越来越广泛的应用,被誉为“数学显微镜”。小波分析和Fourier分析傅立叶变换是一个十分重要的工具,无论是在一般的科学研究中,还是在工程技术的应用中,它都发挥着基本工具的作用。从历史发展的角度来看,自从法国科学家J.Fourier在1807年为了得到热传导方程简便解法而首次提出著名的傅立叶分析技术以来,傅立叶变换首先在电气工程领域得到成功应用,之后,傅立叶变换迅速得到越来越广泛的应用,而且理论上也得到了深入研究。傅立叶变换最重要的意义是它引进了频率的概念,他把一个函数展

3、开成各种频率的谐波的线性叠加,由此引出了一系列频谱分析的理论。很多在时域中看不清的问题,在频域中却能一目了然。因此,长期以来,Fourier分析理论不论在数学中还是工程科学中一直占领着极其重要的地位。傅立叶分析的实质在于将一个任意的函数f(t)表示为具有不同频率的谐波函数的线性叠加。即一族标准函数的加权求和,从而将对原来函数的研究转化为对这个叠加的权系数的研究:其中,权函数:就是原来函数f(t)的傅里叶变换。经过以上的变换,就将对的研究,转化为对权系数,即其傅氏变换的研究。从以上分析可知,经典的

4、傅氏分析是一种纯频域分析。上式中,各符号的含义:表示频域函数;表示对原函数f(t)的傅里叶变换;表示对频域函数的傅里叶反变换。傅里叶变换是时域到频域互相转化的工具,从物理意义上讲,傅里叶变换的实质是把f(t)这个波形分解成许多不同频率的正弦波的叠加和。从傅里叶变换中可以看出,这些标准基是由正弦波及其高次谐波组成的,因此它在频域内是局部化的。例:假设一信号的主要频率成分是100Hz和400Hz,如下图所示,通过傅里叶变换对其频率成分进行频域分析。上图为原始信号,从图中看不出100Hz和400Hz的

5、任何频域信息。但从下图的信号频谱分析中,可以明显看出信号的频率特性。从上例中可知,虽然傅里叶变换能够将信号的时域特征和频域特征联系起来,能分别从信号的时域和频域进行观察,但却不能把两者有机地结合起来。信号的时域波形中不包含任何频域信息;而其傅里叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息。也就是说,对于傅里叶谱中的某一频率,不知道这个频率是在什么时侯产生的。这样,在信号分析中就面临一对最基本的矛盾:时域和频域的局部化矛盾。在实

6、际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。为了研究信号的局部特征,科学家们提出了一些对傅里叶变换进行改进的算法,其中短时傅里叶变换(ShortTimeFourierTransform-STFT)就

7、是比较有代表性的一种。短时傅里叶变换是一种折衷的信号时、频信息分析方法,它是DennisGabor于1946年提出的。短时傅里叶变换的基本思想是:通过给信号加一个小窗,将信号划分为许多小的时间间隔,用傅里叶变换来对每一个时间间隔内的信号进行分析,以便确定该时间间隔内的频率信息。它假定非平稳信号在分析窗函数g(t)的这个短时间间隔内是平稳的(伪平稳),并移动分析窗函数,使f(t)g(t-τ)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换定义如下:其中,f(t)是待

8、分析的信号;函数是的复共轭函数;g(t)是固定的紧支集函数,称为窗口函数。随着时间τ的变化,g(t)所确定的“时间窗”在t轴上移动,使f(t)“逐渐”进行分析。短时傅里叶变换大致反映了f(t)在时刻τ时,频率为ω的“信号成分”的相对含量。这样,信号在窗函数上的展开就可以表示为在这一区域内的状态,并把这一区域称为窗口,δ和ε分别称为窗口的时宽和频宽,表示了时-频分析中的分辨率,窗宽越小则分辨率越高。为了得到更好的时频分析效果,希望δ和ε都非常小,但是由海森堡测不准定理(HeisenbergUnce

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。