国外matlab文献已翻译

国外matlab文献已翻译

ID:9966324

大小:94.50 KB

页数:16页

时间:2018-05-17

国外matlab文献已翻译_第1页
国外matlab文献已翻译_第2页
国外matlab文献已翻译_第3页
国外matlab文献已翻译_第4页
国外matlab文献已翻译_第5页
资源描述:

《国外matlab文献已翻译》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、河北工业大学毕业设计(论文)外文资料翻译学院:系(专业):姓名:学号:外文出处:PatternRecognition附件:1.外文资料翻译译文;2.外文原文。指导教师评语:签名:2010年6月日附件1:外文资料翻译译文基于没有交集的主成分模型下的模式识别方法化学计量学研究组,化学研究所,umea大学摘要:通过独立的主成分建模方法对单独种类进行模式识别,这一方法我们已经进行了深刻的研究,主成分的模型说明了单一种类之内拟合所有的连续变量。所以,假如数据充足的话,主成分模型的方法可以对指定的一组样品中存在的任

2、何模式进行识别,另外,将每一种类中样品通过独立的主成分模型作出拟合,用这种简单的方式,可以提供有关这些变量作为单一变量的相关性。这些试样中存在着“离群”,而且不同种类间也有“距离”。我们应用经典的Fisher鸢尾花数据作为例证。1介绍对于挖掘和使用经验数据的规律性,已经在像化学和生物这样的学科中成为了首要考虑的因素。在化学上一个经典的例子就是元素周期表。当元素按渐增的原子质量排列时,化学元素特性上的规律以每8个为一个周期的出现。相似的,生物学家也常按照植物和动物形态学上的规律才将其归类。比如,植物的花朵

3、和叶片的形状,动物两臂的长度和宽度以及动物不同的骨骼等等。数据分析方法(通常叫做模式识别方法),特别的创制用以探知多维数据的规律性。这种方法已在科学的各分支上得到了广泛的应用。模式识别中的经典问题可系统的陈述如下:指定一些种类,每一类都被定义为一套样本,训练集和检验集,还有基于每组样本的M测度值,那么是否有可能基于原M值对新的样本作出分类呢?我们提出解决这类或相关问题的许多方法,这些方法也由Kanal和另外一些人回顾过了。在科学的分支中,比如化学和生物中,数据分析的范围往往比仅获得一组未分类数据广泛,通

4、常上,数据分析的目的之一仍然可说是分类,但有时我们不能确定一个样本是否属于一未知的或未辨明的类别,我们希望不仅去辨别已知种类,还有未知种类。还有一点很重要,数据分析方法不能过于强调种类间的区别,由于已使用的异变量的介入考虑,两或多种的区别是很小或不明显的。第二,如果我们把一个物体按类比的方法看成某一种,我们其实关心的是物体的某种特性在此种类中的类比性,而某些特性又没有。在化学中,类比模型有着理论上和实践上的重要性,而且可以看成是化学模式识别方法的早期应用。第三,也许是最重要的一点,在化学和生物应用上,我

5、们经常关心某个种类中数据的经验描述,以获取某种的经验模型,这个模型可以被用作解释和说明。比如说,为了构建样本,用已知的合适的特性。实际上,基于相似种类,亦即同一种类的样本的测度方式是可以得出一般模型的。这些模型可以用来解决问题的一般分类和以及处理上面讨论的其他问题。这些是后来证明本文是基于简单的泰勒展开式的模型推导。由此产生的模型形式是主成分(PC)的模型。只要在数据分析实验过程中一系列连续性假设可以得到满足,主成分分析模型可以用来描述基于单独一组样本的变量衡量,总模型由一组不相交集的主成分模型;一个模

6、型对应每个类。不相交集的主成分模型已由福永,渡边等人在模式识别中应用过。由于Karhunen-loeve扩展在模式识别方法的科学中常被称作主成分分析。福永声望调查指出,当数据分析的单一的目的是分类,你可能想放弃模型拟合的方法,而使用组合的特征向量,以最大限度地分辨种类间区别。福利和桑蒙就按照这种思路,他们的意思就是基于分类的单一目的,构建最优特征向量组合。因此,模式识别的建模方法是不是最有效的分类方法。有些方法是在牺牲效率的优势,获得各种类的实证模型,也在建模中防止各种类间的过于独立。主成分分析方法有特

7、别的优势,可以近似的类内任意连续的行为,此外,他们在测量空间的线条或超平面的表现形式,这使得他们很容易映射和可视。本文的目的是在化学和生物学中使用了重点模式识别中的主成分分析方法的。因此,在适应条款中从细节方面给出了陈述。作为一个例证,该方法适用于Fisher鸢尾花数据。2类模型在模式识别方面的框架现有研究下模式识别方法的本质,承认这一事实,即根据定义在一个单一的独立的类的对象,存在某种相似的方式。在此相似性的基础上,一个数学模型,是在相当一般的假设前提上得出。在一个类描述了样本的行为,因此,总的数学模

8、型,包括为每个类一个不相交的模型的集合。通过对对象的观察“已知”分类(这些对象组成参考集合),在不同的相似性模型的参数估计(给定的数值)。未分类的对象,根据这他们最适合模型去拟合所有的参数化类模型然后分类。要知道存在这样的可能性,未分类的样本可能是一种新的,不适合以前的任何已知的类模型。因此,模式识别由两部分框架组成:数据和通过这些数据“校准”相似类别。2.1数据这些数据包括测量变值(索引i)在一个样本组的数目(指数K)。作为一个例子,我们

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。