因式分解的12种方法

因式分解的12种方法

ID:9878207

大小:52.00 KB

页数:11页

时间:2018-05-13

因式分解的12种方法_第1页
因式分解的12种方法_第2页
因式分解的12种方法_第3页
因式分解的12种方法_第4页
因式分解的12种方法_第5页
资源描述:

《因式分解的12种方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、因式分解的十二种方法因式分解因式分解(factorization)因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.⑴提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的~

2、.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.⑵运用公式法①平方差公式:.a^2-b^2=(a+b)(a-b)②完全平方公式:a^2±2ab+b^2=(a±b)^2※能运用完全平方公式分解因式的多项式

3、必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2).立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2).④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)⑶分组分解法分组分

4、解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.⑷拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.⑸十字相乘法①x^2+(pq)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(pq)x+pq=

5、(x+p)(x+q)②kx^2+mx+n型的式子的因式分解如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(axb)(cxd)a-----/bac=kbd=nc/-----dad+bc=m※多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止.(6)应用因式定理:如果f(a)=0,则f(x)必含有

6、因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。经典例题:1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)=[(1+y)+x^2(1-y)]^2-(2x)^2=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1

7、-y)-2x]=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)2.证明:对于任何数x,y,下式的值都不会为33x^5+3x^4y-5x^3y^2+4xy^4+12y^5解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)=(x+3y)(x^4-5x^2y^2

8、+4y^4)=(x+3y)(x^2-4y^2)(x^2-y^2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。