数据挖掘的研究现状

数据挖掘的研究现状

ID:9751501

大小:56.00 KB

页数:8页

时间:2018-05-07

数据挖掘的研究现状_第1页
数据挖掘的研究现状_第2页
数据挖掘的研究现状_第3页
数据挖掘的研究现状_第4页
数据挖掘的研究现状_第5页
资源描述:

《数据挖掘的研究现状》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数据挖掘的研究现状>>教育资源库  一、时代的挑战  近十几年来,人们利用信息技术生产和搜集数据的能力大幅度提高,无数个数据库被用于商业管理、政府办公、科学研究和工程开发等,这一势头仍将持续发展下去。于是,一个新的挑战被提了出来:在这被称之为信息爆炸的时代,信息过量几乎成为人人需要面对的问题。如何才能不被信息的汪洋大海所淹没,从中及时发现有用的知识,提高信息利用率呢?要想使数据真正成为一个公司的资源,只有充分利用它为公司自身的业务决策和战略发展服务才行,否则大量的数据可能成为包袱,甚至成为垃圾。因此,面对人们被数据淹没,人们却饥饿于知识

2、的挑战,数据挖掘和知识发现(DMKD)技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。  数据挖掘(DataMining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(DataFusion)以及决策支持等。人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据可以是结构化的,如关系型数据库中的数据,也可以是半结构化的,如文本、图形、图像数据,甚至是分布在

3、网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。  特别要指出的是,数据挖掘技术从一开始就是面向应用的。它不仅是面向特定数据库的简单检索查询调用,而且要对这些数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指导实际问题的求解,企图发现事件间的相互关联,甚至利

4、用已有的数据对未来的活动进行预测。例如加拿大BC省公司要求加拿大SimonFraser大学KDD研究组,根据其拥有十多年的客户数据,总结、分析并提出新的收费和管理办法,制定既有利于公司又有利于客户的优惠政策。美国著名国家篮球队NBA的教练,利用某公司提供的数据挖掘技术,临场决定替换队员,一度在数据库界被传为佳话。  这样一来,就把人们对数据的应用,从低层次的末端查询操作,提高到为各级经营决策者提供决策支持。这种需求驱动力,比数据库查询更为强大。同时需要指出的是,这里所说的知识发现,不是要求发现放之四海而皆准的真理,也不是要去发现崭新的自

5、然科学定理和纯数学公式,更不是什么机器定理证明。所有发现的知识都是相对的,是有特定前提和约束条件、面向特定领域的,同时还要能够易于被用户理解,最好能用自然语言表达发现结果。因此DMKD的研究成果很讲求实际。1997年第3届KDD国际学术大会上进行的实实在在的数据挖掘工具的竞赛评奖活动,就是一个生动的证明。最近,还有不少DMKD产品用来筛选Inter上的新闻,保护用户不受无聊电子邮件的干扰和商业推销,受到极大的欢迎。  二、研究现状  KDD一词首次出现在1989年8月举行的第11届国际联合人工智能学术会议上。迄今为止,由美国人工智能协会

6、主办的KDD国际研讨会已经召开了7次,规模由原来的专题讨论会发展到国际学术大会,人数由二三十人到七八百人,论文收录比例从2X1到6X1,研究重点也逐渐从发现方法转向系统应用,并且注重多种发现策略和技术的集成,以及多种学科之间的相互渗透。其他内容的专题会议也把数据挖掘和知识发现列为议题之一,成为当前计算机科学界的一大热点。  1997年亚太地区在新加坡组织了第一次规模较大的PAKDD学术研讨会,很有特色。今年将在澳大利亚墨尔本召开的PAKDD98已经收到150多篇论文,空前热烈。  此外,数据库、人工智能、信息处理、知识工程等领域的国际学

7、术刊物也纷纷开辟了KDD专题或专刊。IEEE的Knol发送一份电子邮件即可,还可以下载各种各样的数据挖掘工具软件和典型的样本数据仓库,供人们测试和评价。另一份在线周刊为DS*(DS代表决策支持),1997年10月7日开始出版,可向dstrialtgc.提出免费订阅申请。在网上,还有一个自由论坛DMEmailClub,人们通过电子邮件相互讨论DMKD的热点问题。  至于DMKD书籍,可以在任何计算机书店找到十多本,但大多带有商业色彩。笔者建议感兴趣者可读一读由美国AAA/MIT在1996年出版的《AdvancesinKnoining》一书

8、。当前,世界上比较有影响的典型数据挖掘系统有CoverStory、EXPLORA、Knoiner、Quest等。  三、内容和本质  随着DMKD研究逐步走向深入,人们越来越清楚地认识到,DMKD的研究主要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。