高考数学第一轮例题解析复习15

高考数学第一轮例题解析复习15

ID:9583171

大小:156.54 KB

页数:5页

时间:2018-05-03

高考数学第一轮例题解析复习15_第1页
高考数学第一轮例题解析复习15_第2页
高考数学第一轮例题解析复习15_第3页
高考数学第一轮例题解析复习15_第4页
高考数学第一轮例题解析复习15_第5页
资源描述:

《高考数学第一轮例题解析复习15》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高中数学一轮复习资料第十五章解析几何第四节直线与圆、圆与圆的位置关系A组1.(高考天津卷)若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为2,则a=________.解析:两圆方程作差易知弦所在直线方程为:y=,如图,由已知

2、AC

3、=,

4、OA

5、=2,有

6、OC

7、==1,∴a=1.答案:12.(高考全国卷Ⅱ)已知圆O:x2+y2=5和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于________.解析:依题意,过A(1,2)作圆x2+y2=5的切线方程为x+2y=5,在x轴上的截距为5,在y轴上的截距为,切线与坐标轴围成的三角形面积S=××5=

8、.答案:3.(高考湖北卷)过原点O作圆x2+y2-6x-8y+的两条切线,设切点分别为P、Q,则线段PQ的长为________.解析:∵圆的标准方程为(x-3)2+(y-4)2=5,可知圆心为(3,4),半径为.如图可知,

9、CO

10、=5,∴OP==2.∴tan∠POC==.在Rt△POC中,OC·PM=OP·PC,∴PM==2.∴PQ=2PM=4.答案:44.若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是________.解析:将圆x2+y2-2x+4y+4=0化为标准方程,得(x-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆

11、无公共点,即圆心到直线的距离大于半径,即d==>1,∴m<0或m>10.答案:(-∞,0)∪(10,+∞)5.(原创题)已知直线x-y+2m=0与圆x2+y2=n2相切,其中m,n∈N*,且n-m<5,则满足条件的有序实数对(m,n)共有________个.解析:由题意可得,圆心到直线的距离等于圆的半径,即2m-1=n,所以2m-1-m<5,因为m,n∈N*,所以,,,,故有序实数对(m,n)共有4个.答案:4个6.(南京调研)已知:以点C(t,)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与

12、圆C交于点M,N,若OM=ON,求圆C的方程.解:(1)证明:∵圆C过原点O,∴OC2=t2+.设圆C的方程是(x-t)2+(y-)2=t2+,令x=0,得y1=0,y2=;令y=0,得x1=0,x2=2t.∴S△OAB=OA·OB=×

13、

14、×

15、2t

16、=4,即△OAB的面积为定值.(2)∵OM=ON,CM=CN,∴OC垂直平分线段MN.∵kMN=-2,∴kOC=,∴直线OC的方程是y=x.∴=t,解得:t=2或t=-2.当t=2时,圆心C的坐标为(2,1),OC=,此时圆心C到直线y=-2x+4的距离d=<,圆C与直线y=-2x+4相交于两点.当t=-2时,圆心C的坐标为(-2,-1),OC

17、=,此时圆心C到直线y=-2x+4的距离d=>,圆C与直线y=-2x+4不相交,∴t=-2不符合题意舍去.∴圆C的方程为(x-2)2+(y-1)2=5.B组1.直线ax+by+b-a=0与圆x2+y2-x-3=0的位置关系是________.解析:直线方程化为a(x-1)+b(y+1)=0,过定点(1,-1),代入圆的方程,左侧小于0,则定点在圆内,所以直线与圆总相交.答案:相交2.(秦州质检)已知直线y=-x与圆x2+y2=2相交于A、B两点,P是优弧AB上任意一点,则∠APB=____________.解析:弦心距长为,半径为,所以弦AB所对的圆心角为,又因为同弦所对的圆周角是圆心角的

18、一半,所以∠APB=.答案:3.已知向量a=(cosα,sinα),b=(cosβ,sinβ),a与b的夹角为60°,直线xcosα+ysinα=0与圆(x+cosβ)2+(y+sinβ)2=的位置关系是________.解析:cos60°=cosα·cosβ+sinα·sinβ=cos(α-β),d==

19、cos(α-β)

20、=>=r.答案:相离4.过点A(11,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有__条.解析:方程化为(x+1)2+(y-2)2=132,圆心为(-1,2),到点A(11,2)的距离为12,最短弦长为10,最长弦长为26,所以所求直线条数为2+

21、2×(25-10)=32(条).答案:325.若集合A={(x,y)

22、y=1+},B={(x,y)

23、y=k(x-2)+4}.当集合A∩B有4个子集时,实数k的取值范围是________________.解析:A∩B有4个子集,即A∩B有2个元素,∴半圆x2+(y-1)2=4(y≥1)与过P(2,4)点,斜率为k的直线有两个交点,如图:A(-2,1),kPA=,过P与半圆相切时,k=,∴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。