人工神经网络在医学研究中的应用

人工神经网络在医学研究中的应用

ID:9537821

大小:50.50 KB

页数:3页

时间:2018-05-03

人工神经网络在医学研究中的应用_第1页
人工神经网络在医学研究中的应用_第2页
人工神经网络在医学研究中的应用_第3页
资源描述:

《人工神经网络在医学研究中的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、人工神经网络在医学研究中的应用作者:李丽霞张敏郜艳晖张丕德周舒冬【摘要】人工神经网络由于其具有高度的自适应性、非线性、善于处理复杂关系的特点,在许多研究领域得到了广泛应用,并取得了令人瞩目的成就。对其目前在医学研究领域中的应用做一简单综述。【关键词】人工神经网络;应用人工神经网络(ArtificialNeuralNetap,SOM)在基因表达数据分析中的应用1.1方法介绍脑神经学的研究表明,人脑中大量的神经元处于空间的不同区域,有着不同的功能,各自敏感着各自的输入信息模式的不同特征。芬兰赫尔辛基大学神经网络专家T.Kohonen根据大脑神经系统的这一特性,于1981年提出了自

2、组织特征映射网络,它模拟人的大脑,利用竞争学习的方式进行网络学习,具有很强的自组织、自适应学习能力,鲁棒性和容错能力,其理论及应用发展很快,目前已在信息处理、模式识别、图像处理、语音识别、机器人控制、数据挖掘等方面都有成功应用的实例。Kohonen网络由输入层和竞争层组成,网络结构见图1。输入层由N个神经元组成,竞争层由M个输出神经元组成,输入层与竞争层各神经元之间实现全互连接,竞争层之间实行侧向连接。设输入向量为x=(x1,…,xd)T,输出神经元j对应的权重向量为eans聚类等,但在处理复杂非线性关系及变量间的交互作用时效果较差,受异常值影响较大。近年来神经网络技术法成为

3、聚类领域的研究热点,其中自组织特征映射网络由于其良好的自适应性,其算法对基因表达数据的聚类有较高的稳定性和智能性,尤其在处理基因表达中有缺失数据及原始空间到目标空间存在非线性映射结构时有较好的体现,适用于复杂的多维数据的模式识别和特征分类等探索性分析,同时可实现聚类过程和结果的可视化[2]。目前Kohonen网络已被成功用到许多基因表达数据的分析中,JihuaHuang等[3]设计6×6的网络对酵母细胞周期数据进行分析,总正确率为67.7%;曹晖等[4]将其算法改进后用在酵母菌基因表达数据中,总正确率高达84.73%,有较高的聚类效能;邓庆山[5]将该模型与K平均值聚类方法结

4、合用于公开的结肠基因表达数据集和白血病基因表达数据集,聚类的准确率分别为94.12%和90.32%。目前Kohonen网络在医学领域中主要应用前景有:①发现与疾病相关的新的未知基因,对目标基因进一步研究,提高诊断的正确率,并对药物的开发研究提供重要的线索;②对肿瘤组织的基因表达谱数据聚类,以期发现新的、未知的疾病亚型(肿瘤亚型),以便提出更加有针对性的治疗方案,为从分子水平对疾病分型、诊断、预后等提供依据;③发现与已知基因有相似功能的基因,为推断未知基因的可能功能提供线索。2BP神经网络在医学研究中的应用2.1BP神经网络在疾病辅助诊断中的应用2.1.1方法介绍BP神经网络是

5、目前应用最多的神经网络,一般由一个输入层(inputlayer)、一个输出层(outputlayer)、一个或几个中间层(隐层)组成。每一层可包含一个或多个神经元,其中每一层的每个神经元和前一层相连接,同一层之间没有连接。输入层神经元传递输入信息到第一隐层或直接传到输出层,隐层的神经元对输入层的信息加权求和,加一个常数后,经传递函数运算后传到下一个隐层(或输出层),常用的传递函数是logistic函数,即Φh=1/(1+exp(-z)),输出层神经元对前一层的输入信息加权求和经传递函数Φ0(线性或logistic函数或门限函数)运算后输出,BP神经网络一般采用BP算法训练网络

6、,关于BP算法及改进可参考相关2.2.2应用国外RuthM.Ripley等[9]将7种不同的神经网络生存分析模型(3种离散时间模型,4种连续时间模型)用于1335例乳腺癌患者复发概率的预测,并对其精确性、灵敏度、特异度等预测性能指标进行比较,结果证明神经网络方法能成功用于生存分析问题,可以提取预后因子所蕴涵的最大可能的信息。AnnyXiang等[12]采用MonteCarlo模拟研究方法,在9种实验条件下(不同的输入结点、删失比例、样本含量等)对Faraggi-Simon法、Liestol-Andersen-Andersen法、改良Buckley-James法处理右删失生存数

7、据的性能与Cox回归作比较,研究结果提示神经网络方法可以作为分析右删失数据的一个有效的方法。D.J.Groves[13]等将Cox回归与神经网络方法对儿童急性淋巴母细胞白血病的预后进行了比较,LucilaOhno-Machado等[14]建立输出层为4个结点的离散时间神经网络模型做为AIDS预后研究的工具,并使用ROC曲线下面积、灵敏度、特异度、阳性预测值、阴性预测值对不同时间区间的预测性能做了评价。国内用于生存分析方面的研究还较少,黄德生[15]等利用BP神经网络建立time-codedmodel和s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。