欢迎来到天天文库
浏览记录
ID:9537018
大小:50.00 KB
页数:3页
时间:2018-05-03
《人工神经网络在药物制剂研究中的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、人工神经网络在药物制剂研究中的应用作者:苏青 许小红 吴敏 高秀蓉 钟铃【摘要】 人工神经网络模拟人脑生物神经网络系统处理信息的方式,是通过经验而不是通过设计好的程序进行学习、训练,这些构成了人工神经网络具有模式识别、预测、评价和优化决策等能力的基础。本文就神经网络近年来在药剂学的处方设计及优化、制备工艺及体内体外相关性评价等方面的应用做一综述。【关键词】人工神经网络;药物制剂Abstract:Artificialneuralulatingtheprocessofhumanbrainsnervesystemstodealation,me,isthebaseoftheabilitythatth
2、eartificialneuralizationetc.Thispapertbrieflyrevieaceuticalfields,suchasformulationoptimization,preparationparametersoptimizationandinvitro-invivocorrelationevaluation.Keyaceutic药物制剂研究是一个复杂的过程,包括制剂处方,制剂制备工艺及制剂体内体外评价等,其中任何一个方面都属于多因素,多水平的复杂优化问题。例如处方设计过程中涉及不同质量不同用量的各种敷料配比及压力、温度、水分等,这些因素直接影响剂型的安全性和有效性;制
3、剂设备工艺涉及众多纷繁复杂的工艺参数优化,制剂体内体外评价更是受生物系统的极端复杂性影响。过去人们通常依靠某一方面的专家来承担相应的工作,免不了受许多经验化主观因素的影响,效率较低,而基于人工智能的神经网络则很适于处理这类复杂的多变量非线性系统,并可通过网络的预测能力实现多因素的同步优化[1-3]。1神经网络理论人工神经网络(artificialneural.2.2药物制剂制备工艺方面的应用药物剂型的制备工艺过程中,存在着诸如温度、压力、粘度、流速等诸多影响因素,这些工艺参数与制剂质量指标之间往往存在很强的非线性和耦合性,很难用传统的方法建立有效的质量控制模型。基于人工智能的人工神经网络具有辨
4、识和逼近任意复杂非线性系统的能力,而且具有一定的容错能力,可以同步优化制备工艺中的多个工艺参数[16]。张宇飞等[17]收集某大型中药企业滴丸制剂生产线的100多个生产批次,每个批次包含多个数据的样本作为神经网络训练集,设计了一个具有三个层的BP神经网络,输入层的5个节点分别为化料温度,化料时间,滴制温度,滴制速度及冷凝温度;输出层的结点为滴丸成品率,建立了某滴丸制剂过程工艺参数与滴丸成品率之间的神经网络映射模型。然后利用遗传算法对模型输入参数空间进行寻优,搜索使滴丸成品率达到最优时所对应的工艺参数值。经生产试制,利用优化后的工艺参数值进行生产,能使该制剂过程的成品率提高约2.6个百分点,表明
5、利用神经网络与遗传算法对制剂过程进行建模与优化是合理的,该项目属于国家863高技术研究发展计划项目。2.3药物制剂体内-体外相关性评价的应用建立体内外相关性评价方法对药物制剂研究非常重要。一个好的体内外相关性模型应能使预测值与实测值相互吻合,从而用体外的释药数据预测药物的体内过程,设计与已知制剂生物等效的制剂,或者制定药物制剂的质量标准及指导临床用药。但是生物系统是极其复杂的,药物在体内的代谢过程也是相当复杂的,使得判定药物疗效与生物学、药物动力学及药物分布等各因素之间的关系非常困难[18]。人工神经网络是模拟生物神经系统对外界系统的认知过程,它给我们提供了一个很好的研究体内外相关性的方法[1
6、9-20]。李凌冰[21]等采用人工神经网络结合C与琥珀酸的用量为神经网络输入变量,考虑到缓控释制剂的特点,以2h的血药浓度,12h的血药浓度一时间曲线下面积AUCl2,以及血药浓度的峰值(max数据为输出,建立了氯氮平非pH依赖型缓释制剂处方组成和血药浓度之间的关系模型。以此为基础,绘制输出三个输出变量的等高线图谱,分别在3个等高线图谱上标记最佳变量所取值的范围,将3个图中的最佳区域结合在一起从而求得生物利用度最佳的处方。李凌冰等[22]应用人工神经网络研究红霉素缓释微囊的体内外相关性。以明胶为囊材制备红霉素缓释胶囊,以体外释放度的数据作为网络输入,血药浓度数据作为网络输出,通过比较血药浓度
7、实测值与预测值的差异考察了网络的可靠性,结果令人满意。3结语人工神经网络技术作为一种新方法新技术虽然已在药剂研究领域取得了一定的进展,但仍然有许多问题需要进一步的研究。例如神经网络虽然可用于制剂制备工艺参数的优化,但能否利用神经网络实时监控工艺过程以控制质量还需要进一步探讨;人工神经网络通常需要大量的数据训练网络,但有时数据的获得比较困难,尤其是体内的试验数据;神经网络拓扑结构的选择规律、传递函数
此文档下载收益归作者所有