欢迎来到天天文库
浏览记录
ID:9517902
大小:303.26 KB
页数:8页
时间:2018-05-02
《安徽省皖北协作区高三数学最后一卷 文》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、皖北协作区最后一卷文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间1.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置.参考公式:样本数据的标准差其中为样本平均数球的面积公式第Ⅰ卷(选择题共50分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符
2、合题目要求的.1.复数(是虚数单位)的虚部是A.B.C.D.2.已知是实数集,,则A.B.C.D.3.现有个数,其平均数是,且这个数的平方和是,那么这个数组的标准差是A.B.C.D.4.已知函数,若存在,使得恒成立,则的值是A.B.C.D.5.已知、表示直线,表示平面,给出下列四个命题,其中真命题为(1)(2)(3)则∥(4)A.(1)、(2)B.(3)、(4)C.(2)、(3)D.(2)、(4)6.已知平面上不共线的四点,若等于A.B.C.D.7.某所学校计划招聘男教师名,女教师名,和须满足约束条件则该校招聘的教师最多()名A.B.C
3、.D.8.函数的零点所在的区间是A.B.C.D.9.过直线上一点引圆的切线,则切线长的最小值为A.B.C.D.10.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线上的两点,关于直线对称,且,则的值为A.B.C.D.第Ⅱ卷(非选择题共100分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在第Ⅱ卷答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.3.第Ⅱ卷共包括填空题和解答题两道大题.否开始输出结束是二、填空题:本大
4、题共5小题,每小题5分,共25分.11.设为等比数列的前项和,,则12.如图所示的程序框图输出的结果为__________.13.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为__________.第13题图11114.地震的震级R与地震释放的能量E的关系为.3月11日,日本东海岸发生了9.0级特大地震,中国汶川的地震级别为8.0级,那么地震的能量是地震能量的倍.15.给出下列命题:①已知都是正数,且,则;②当时,函数的图像都在直线的上方;③命题“,使得”的否定是真命题;④“”是“”的充要条件.其
5、中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知向量共线,且有函数.(Ⅰ)若,,求的值;(Ⅱ)在中,角,的对边分别是,且满足,求函数的取值范围.17.(本小题满分12分)在某种产品表面进行腐蚀性检验,得到腐蚀深度与腐蚀时间之间对应的一组数据:时间(秒)51015203040深度(微米)61010131617现确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再对被选取的2组数据进行检验.(Ⅰ)求选取的
6、2组数据恰好不相邻的概率;(Ⅱ)若选取的是第2组和第5组数据,根据其它4组数据,求得关于的线性回归方程,规定由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2微米,则认为得到的线性回归方程是可靠的,判断该线性回归方程是否可靠.18.(本小题满分12分)已知四棱锥,其中,,,∥,为的中点.ABCDEF(Ⅰ)求证:∥面;(Ⅱ)求证:面;(III)求四棱锥的体积.19.(本小题满分12分)已知等差数列的前项和为,公差成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设是首项为1,公比为3的等比数列,求数列的前项和.本小题满分13分)已知椭
7、圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)是椭圆上两点,、是椭圆位于直线两侧的两动点,BxyA若直线的斜率为求四边形面积的最大值.21.(本小题满分14分)已知函数在点的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)设,求证:在上恒成立.文科数学参考答案及评分标准一.选择题(本大题共10小题,每小题5分,共50分.)BDBDBBDBCB二.填空题(本大题共5小题,每小题5分,共25分.)11.12.13.14.15.①③三.解答题16.(本小题满分12分)解:(Ⅰ)(Ⅰ)∵与共线∴………
8、…………………3分∴,即…………………………………………4分∵,∴…………………………6分(Ⅱ)已知由正弦定理得:∴,∴在中∠…………………………………………8分∵∠∴,…………………………………………10
此文档下载收益归作者所有