数学函数的应用题

数学函数的应用题

ID:9419617

大小:344.50 KB

页数:9页

时间:2018-04-30

数学函数的应用题_第1页
数学函数的应用题_第2页
数学函数的应用题_第3页
数学函数的应用题_第4页
数学函数的应用题_第5页
资源描述:

《数学函数的应用题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数的应用题【热点聚焦】最近几年的高试题,加强了对函数应用题的考查,主要的是将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义等等.【基础知识】运用函数概念建立模型研究解决某些实际问题的过程和方法:1)建立实际问题中的变量之间的函数关系,从而将实际问题转化为函数问题;2)运用所学知识研究函数问题得到函数问题的解答;3)将函数问题的解翻译或解释成实际问题的解,从而解决实际问题.根据收集到的数据的特点建立函数模型,

2、解决实际问题的基本过程:【课前训练】1.老师今年用7200元买一台笔记本.电子技术的飞速发展,计算机成本不断降低,每隔一年计算机的价格降低三分之一.三年后老师这台笔记本还值(  ) A.7200×()3元 B.7200×()3元 C.7200×()2元D.7200×()2元2.化学上常用pH来表示溶液酸碱性的强弱,pH=-1g{c(H+)},其中f(H+)表示溶液中H+的浓度.若一杯胡萝卜汁的c(H+)=1×10-5mol/L,则这杯胡萝卜汁的pH是(  )  A.2B.3C.4D.53.如果某林区的森林蓄

3、积量每年平均比上一年增长10.4%,那么经过x年可以增长到原来的y倍,则函数y=f(x)的图象大致为图中的(  )4.邮局规定,邮寄包裹,在5千克内每千克5元,超过5千克按每千克3元收费,邮费与邮寄包裹重量的函数关系式为____.5.某工厂八年来某种产品总产量C与时间t(年)的函数关系如图所示,下列四种说法:  (1)前三年中产量增长的速度越来越快;  (2)前三年中产量增长的速度越来越慢;  (3)三年后,这种产品停止生产了;  (4)第三年后,年产量保持不变.  其中说法正确的是____.图1【试题精析

4、】【例1】(2007年上海春季高考试题)某人定制了一批地砖.每块地砖(如图1所示)是边长为米的正方形,点E、F分别在边BC和CD上,△、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1.若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.图2(1)求证:四边形是正方形;(2)在什么位置时,定制这批地砖所需的材料费用最省?【例2】(2003北京春)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租

5、出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【评述】本题贴近生活.要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决.【例3】(2000全国卷)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图2—10中(1)的一条折线表示;西红柿的种植成本与上市时间的关

6、系用图2—10中(2)的抛物线表示.(1)写出图中(1)表示的市场售价与时间的函数关系式P=f(t);写出图中(2)表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102,kg,时间单位:天)【评述】本题主要考查由函数图象建立函数关系式和求函数最大值的问题.考查运用所学知识解决实际问题的能力.【例4】(2001上海卷)用水清洗一堆蔬菜上残留的农药.对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可

7、洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).(1)试规定f(0)的值,并解释其实际意义;(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;(3)设f(x)=,现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.【评述】本题主要考查运用所学数学知识和方法解决实际问题的能力.以及函数概念、性质和不等

8、式证明的基本方法.【例5】据世界人口组织公布,地球上的人口在公元元年为2.5亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底,地球上的人口数达到了60亿.请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿?到2100年地球上将会有多少人口?【例6】(2007年襄樊市调研试题)通过研究学生的学习行为,专家发现,学生的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。