资源描述:
《原码、反码、补码的总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、原码、反码、补码 数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(24)和八进制(23).下面进入正题.数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1
2、byte,原码能表示数值的范围为(-127~-0+0~127)共256个.有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下:假设字长为8bits(1)10-(1)10=(1)10+(-1)10=(0)10(00000001)原+(10000001)原=(10000010)原=(-2)显然不正确.因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应.下面是反码的减法运算:(1)10-(1)10
3、=(1)10+(-1)10=(0)10(00000001)反+(11111110)反=(11111111)反=(-0)有问题.(1)10-(2)10=(1)10+(-2)10=(-1)10(00000001)反+(11111101)反=(11111110)反=(-1)正确问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).于是就引入了补码概念.负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为
4、:(-128~0~127)共256个.注意:(-128)没有相对应的原码和反码,(-128)=(10000000)补码的加减运算如下:(1)10-(1)10=(1)10+(-1)10=(0)10(00000001)补+(11111111)补=(00000000)补=(0)正确(1)10-(2)10=(1)10+(-2)10=(-1)10(00000001)补+(11111110)补=(11111111)补=(-1)正确所以补码的设计目的是:⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计所有这些转换都是在计算
5、机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!有网友对此做了进一步的总结:本人大致总结一下:1、在计算机系统中,数值一律用补码来表示(存储)。主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。2、补码与原码的转换过程几乎是相同的。数值的补码表示也分两种情况:(1)正数的补码:与原码相同。例如,+9的补码是00001001。(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加
6、1。例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码0000111按位取反为1111000;再加1,所以-7的补码是11111001。已知一个数的补码,求原码的操作分两种情况:(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取反,然后再整个数加1。例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”;其余7位1111001取反后为00
7、00110;再加1,所以是10000111。在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”的概念:“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”。例如: 时钟的计量范围是0~11,模=12。 表示n位的计算机计量范围是0~2(n)-1,模=2(n)。【注:n表示指数】 “模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数。任何有模的计量