排列与元素的顺序有关

排列与元素的顺序有关

ID:8836523

大小:51.00 KB

页数:6页

时间:2018-04-09

排列与元素的顺序有关_第1页
排列与元素的顺序有关_第2页
排列与元素的顺序有关_第3页
排列与元素的顺序有关_第4页
排列与元素的顺序有关_第5页
资源描述:

《排列与元素的顺序有关》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.  (一)两个基本原理是排列和组合的基础  (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.  (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=

2、m1×m2×m3×…×mn种不同的方法.  这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.  这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.  (二)排列和排列数  (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.  从排列的意义可知,如果

3、两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.  (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列  当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!  (三)组合和组合数  (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.  从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.

4、  (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个  这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.  一、排列组合部分是中学数学中的难点之一,原因在于  (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;  (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;  (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;

5、  (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。  二、两个基本计数原理及应用  (1)加法原理和分类计数法  1.加法原理  2.加法原理的集合形式  3.分类的要求  每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)  (2)乘法原理和分步计数法  1.乘法原理  2.合理分步的要求  任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立

6、;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同  [例题分析]排列组合思维方法选讲  1.首先明确任务的意义  例1.从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。  分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。  设a,b,c成等差,∴2b=a+c,可知b由a,c决定,  又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,

7、10)*2*P(2,2),因而本题为180。  例2.某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?  分析:对实际背景的分析可以逐层深入  (一)从M到N必须向上走三步,向右走五步,共走八步。  (二)每一步是向上还是向右,决定了不同的走法。  (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。  从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,  ∴本题答案为:=56。  2.注意加法原理与乘法原理的特点,

8、分析是分类还是分步,是排列还是组合  例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。  分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。