欢迎来到天天文库
浏览记录
ID:8833471
大小:469.00 KB
页数:18页
时间:2018-04-09
《几个重要的特殊数列》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、几个重要的特殊数列 基础知识 1.斐波那契数列 莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即: 假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子? 这就是非常著名的斐波那契数列问题。其实这个问题的解决并不是很困难,可以用表示第个月初时免房里的免子的对数,则有,第个月初时,
2、免房内的免子可以分为两部分:一部分是第个月初就已经在免房内的免子,共有对;另一部分是第个月初时新出生的小免子,共有对,于是有。 现在就有了这个问题:这个数列的通项公式如何去求?为了解决这个问题,我们先来看一种求递归数列通项公式的求法——特征根法。 特征根法:设二阶常系数线性齐次递推式为(),其特征方程为,其根为特征根。 (1)若特征方程有两个不相等的实根,则其通项公式为(),其中A、B由初始值确定; (2)若特征方程有两个相等的实根,则其通项公式为(),其中A、B由初始值确定。(这个问题的证明我们将在后面的讲解中给出) 因此对于斐
3、波那契数列,对应的特征方程为,其特征根为: ,所以可设其通项公式为,利用初始条件得,解得 所以。 这个数列就是著名的斐波那契数列的通项公式。斐波那契数列有许多生要有趣的性质,如: 它的通项公式是以无理数的形式给出的,但用它计算出的每一项却都是整数。斐波那契数列在数学竞赛的组合数学与数论中有较为广泛地应用。为了方便大家学习这一数列,我们给出以下性质:(请同学们自己证明) (1)斐波那契数列的前项和; (2); (3)(); (4)(); (5)(); 2.分群数列 将给定的一个数列{}:按照一定的规则依顺序用括
4、号将它分组,则可以得到以组为单位的序列。如在上述数列中,我们将作为第一组,将作为第二组,将作为第三组,……依次类推,第组有个元素,即可得到以组为单位的序列:(),(),(),……我们通常称此数列为分群数列。 一般地,数列{}的分群数列用如下的形式表示:(),(),(),……,其中第1个括号称为第1群,第2个括号称为第2群,第3个括号称为第3群,……,第个括号称为第群,而数列{}称为这个分群数列的原数列。如果某一个元素在分群数列的第个群中,且从第个括号的左端起是第个,则称这个元素为第群中的第个元素。 值得注意的是一个数列可以得到不同的分群数列。
5、如对数列{}分群,还可以得到下面的分群数列: 第个群中有个元素的分群数列为:(),(),()…; 第个群中有个元素的分群数列为:(),(),()…等等。 3.周期数列 对于数列{},如果存在一个常数,使得对任意的正整数恒有成立,则称数列{}是从第项起的周期为T的周期数列。若,则称数列{}为纯周期数列,若,则称数列{}为混周期数列,T的最小值称为最小正周期,简称周期。 周期数列主要有以下性质: (1)周期数列是无穷数列,其值域是有限集; (2)周期数列必有最小正周期(这一点与周期函数不同); (3)如果T是数列{}的周期,
6、则对于任意的,也是数列{}的周期; (4)如果T是数列{}的最小正周期,M是数列{}的任一周期,则必有T
7、M,即M=(); (5)已知数列{}满足(为常数),分别为{}的前项的和与积,若,则,; (6)设数列{}是整数数列,是某个取定大于1的自然数,若是除以后的余数,即,且,则称数列是{}关于的模数列,记作。若模数列是周期的,则称{}是关于模的周期数列。 (7)任一阶齐次线性递归数列都是周期数列。 4.阶差数列 对于一个给定的数列{},把它的连续两项与的差-记为,得到一个新数列,把数列称为是原数列{}的一阶差数列;如果,则称数列
8、是数列的一阶差数列,是{}的二阶差数列;依次类推,可以得到数列{}的阶差数列,其中。 如果某一数列的阶差数列是一非零常数列,则称该数列为阶等差数列。其实一阶等差数列就是我们通常说的等差数列;高阶等差数列是二阶或二阶以上等差数列的统称。 高阶等差数列具有以下性质: (1)如果数列{}是阶等差数列,则它的一阶等差数列是阶差数列; (2)数列{}是阶等差数列的充要条件是:数列{}的通项是关于的次多项式; (3)如果数列{}是阶等差数列,则其前项之和是关于的次多项式。 高阶等差数列中最常见的问题是求通项公式以及前项和,更深层次的问题2
9、是差分方程的求解。解决问题的基本方法有: (1)逐差法:其出发点是; (2)待定系数法:在已知阶数的
此文档下载收益归作者所有