资源描述:
《2017届湖南省益阳市箴言中学高三上学期第二次模拟考试理科数学试题及答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、益阳市箴言中学2015届高三第二次模拟考试数学(理科)考试时间:150分钟总分:150分一、选择题(每题5分)1.设集合,,则=()A.B.C.D.2.已知集合,,,且,则整数对的个数为()A.20B.25C.30D.423.设函数,记则()A.B.C.D.4.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( ) A.B.C.D.5.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为( ) A.2B.4C.2D.46.设函数的定义域为,如果对于任意的,存在唯一的,使得成立(其中为常数),则称函数在上的均值为,现在给出
2、下列4个函数:①②③④,则在其定义域上的均值为2的所有函数是下面的()A.①②B.③④C.①③④D.①③7.设f(x)=
3、lnx
4、,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( ) A.(0,)B.(,e)C.(0,]D.[,)8.设函数的定义域为实数集R,且,若,则函数的最小值是A.1B.3C.D.9.如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是( )10.已知函
5、数的定义域为实数集,满足(是的非空真子集),在上有两个非空真子集,且,则的值域为A.B.C.D.二、填空题(每题5分)11.已知命题p:“∀x∈R,∃m∈R,4x-2x+1+m=0”,且命题非p是假命题,则实数m的取值范围为________.12.若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I上是“弱增函数”.已知函数h(x)=x2﹣(b﹣1)x+b在(0,1]上是“弱增函数”,则实数b的值为________.13.已知函数图象上一点处的切线为,若方程在区间内有两个不等实根,则实数的取值范围是14.定义在R上的奇函数满足,且在上的解析式为,则15.已知函数
6、分别是二次函数和三次函数的导函数,它们在同一坐标系下的图象如图所示,设函数,则的大小关系为三、解答题16(本题12分).在中,角所对的边分别为,已知,(1)求的大小;(2)若,求的取值范围.17(本题12分).如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.(I)证明://平面;(II)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.18(本题12分).设,用表示当时的函数值中整数值的个数.(1)求的表达式.(2)设,求.(3)设,若,求的最小值.19(本题13分).经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满
7、载行驶时,每100km所消耗的燃油量u(单位:L)与速度v(单位:km/h),的关系近似地满足u=除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?20(本题13分).已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围.21(本题13分).已知函数,(1)若,求函数的极值;(2)设函数,
8、求函数的单调区间;(3)若在()上存在一点,使得成立,求的取值范围.数学(理科)答案1.C2.C3.B4.D5.D6.D7.D8.B9.c10.B若,则,;若,则;若,则,,故选B.11.m12.113.14.15.16.解:(1)由已知条件结合正弦定理有:,从而有:,.(2)由正弦定理得:,,,即:.17.解:法一:(I)以为坐标原点,分别以、、所在直线为轴、轴、轴建立空间直角坐标系,设,则,,,设是平面BDE的一个法向量,则由,得取,得.∵,(II)由(Ⅰ)知是平面BDE的一个法向量,又是平面的一个法向量.设二面角的平面角为,由图可知∴.故二面角的余弦值为.(Ⅲ)∵∴假设棱上存在点,使⊥平
9、面,设,则,由得∴即在棱上存在点,,使得⊥平面.法二:(I)连接,交于,连接.在中,为中位线,,//平面.(II)⊥底面,平面⊥底面,为交线,⊥平面⊥平面,为交线,=,是的中点⊥⊥平面,⊥即为二面角的平面角.设,在中,故二面角的余弦值为.(Ⅲ)由(II)可知⊥平面,所以⊥,所以在平面内过作⊥,连EF,则⊥平面.在中,,,,.所以在棱上存在点,,使得⊥平面.18.解对,函数在单增,值域为,故.(2)