欢迎来到天天文库
浏览记录
ID:8692251
大小:103.00 KB
页数:5页
时间:2018-04-05
《高一数学指数与指数幂的运算2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.1.1指数与指数幂的运算(一)一、内容及其解析(一)内容:章导言,引出指数幂概念的推广,根式.(二)解析:本节课是关于根式的一节概念课,是高中新课改人教A版教材第二章的第一节课.第一章主要介绍了函数的概念,本章计划用14个课时重点介绍几类具体的基本初等函数,以此进一步理解函数概念,认识函数的思想.其中,指数函数计划用6课时,具体分配如下:根式(含章导言)1课时,分数指数幂1课时,无理指数幂1课时,指数函数及其性质3课时.1.章导言在本节课起到了一个承上启下的作用,特别对学习基本初等函数具有引导作用.2.本章首先要介绍的是指数函数,即f(x)=ax(a>0且a≠1),这
2、里的ax是一个指数幂,其中x∈R.这就涉及到实数指数幂的概念,而在此之前同学只学过整数指数幂,所以需要在学习指数函数前将同学已有指数幂的概念进行推广,由整数指数幂推广到有理指数幂,再进一步推广到实数指数幂.由于先有根式才有有理指数幂(分数指数幂),根式就成了有理指数幂的基础,而方根又是根式概念的核心,所以本节课主要就是针对有理指数幂,从n次方根逐步认识根式,为进一步认识有理指数幂奠定基础.3.由于本模块、本章和本节都是围绕函数这一核心,从不同角度展开研究,所以无论是指数和指数幂的运算,还是根式,都是为函数教学服务的,都不是我们研究的重点.这样,本节课的重点就应该放在为后续
3、内容的铺垫上,即将整数指数幂推广到有理指数幂和引入指数函数,而关键在于根式的概念,包括n次方根定义、表示和性质.二、目标及其解析(一)教学目标1.初步了解指数幂和指数函数;2.通过类比平方根、立方根,认识n次方根,进而初步理解根式的概念.(二)解析1.《课程标准》没有明确提出本节课的具体教学内容和要求,但根据它对本模块、本章和本节的内容要求,结合教科书当前和今后内容的实际,基于对相关内容的分析,提出了上述教学目标的内容并给出了相应的要求定位.2.初步了解指数幂和指数函数,主要是指结合具体事例,从它们的表示形式上对它们有所了解,并不给出它们的定义,更不涉及其运算或图象、性质
4、.3.由于本节课的教学内容不仅涉及根式的定义,还涉及其表示和性质,后续内容还涉及其运算,所以对根式概念的定位应该是理解层次.而本小节教科书之后将不再专门介绍根式,所以本节课务求初步理解根式概念,而在下节课的根式运算中逐步达到真正的理解.4.在与平方根、立方根比较的过程中,可以进一步学习类比的思想方法,提高同学的思维水平.并在推广与化归的过程中,形成根式的知识链.三、问题诊断分析同学在理解根式概念的过程中可能会遇到困难,具体表现在对n次方根定义的理解,特别是n次方根的存在性,以及性质的认识.因为从平方根和立方根到n次方根,是一个特殊到一般的变化过程,要求同学具有一定的归纳概
5、括能力和抽象能力.要克服这一困难,关键是引导同学建立n次方根与平方根和立方根的联系,通过类比平方根和立方根,让同学在已有的认知基础上,从具体例子出发,不断地观察、比较、模仿、判断,从而形成概念,同时将新知识同化到已有的认知结构中,从而克服可能遇到的困难.四、教学过程设计(一)教学基本流程概念的引入概念的形成概念的明确概念的表示本章学习引导概念的巩固和应用(二)教学情景1.本章学习引导问题1:老师想和在座的每一位同学签署一份合同,合同的具体要求是:从今天开始的一个月内(即31天),老师每天给你10万元钱,而你第一天只需给老师1分钱,以后每天给老师的钱是前一天的两倍.你是否愿
6、意签署这份合同?请思考一分钟,然后作出决定.设计意图:通过创设一个有趣的情景,将同学的注意力引向本章的学习之中.并借此揭示指数函数的形式和爆炸性增长的特点.师生活动:对愿意和不愿意签署合同的同学,都要求其说明原因,即:(1)同学每天得到的钱(万元):10,10,…,10;一个月得到的总和(万元):=310.(2)老师每天得到的钱(万元):10-6,2×10-6,22×10-6,…,2n-1×10-6,…,230×10-6;一个月得到的总和(万元):10-6+2×10-6+22×10-6+…+2n-1×10-6+…+230×10-6=2147.483647.注:上式的计算可
7、借助计算工具,若嫌求和复杂,可只求最后一个数进行体会,230×10-6=1073.741824.若同学们余兴未尽,还可以进一步地问:从哪一天起,同学的支出超过收入?引导学生用计算器探究,并为第三章函数零点的学习奠定基础.问题2:阅读章导言,看章头图并思考章头问题,然后回答:本章我们将要学习哪些内容?教科书为什么这样安排?你准备怎样学?设计意图:引导同学对本章内容有一个概括性的认识,并大致清楚学习的目标和方法.师生活动:从同学的回答来把握其认识的程度,并从中进行引导:(1)当同学泛泛地回答本章将学习基本初等函数时,可进一步追问:
此文档下载收益归作者所有