人教b版选修2-3高中数学1.3《二项式定理》word教案

人教b版选修2-3高中数学1.3《二项式定理》word教案

ID:8610090

大小:165.00 KB

页数:2页

时间:2018-04-03

人教b版选修2-3高中数学1.3《二项式定理》word教案_第1页
人教b版选修2-3高中数学1.3《二项式定理》word教案_第2页
资源描述:

《人教b版选修2-3高中数学1.3《二项式定理》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学目标:1、能用计数原理证明二项式定理;2、掌握二项式定理及二项式展开式的通项公式教学重点:掌握二项式定理及二项式展开式的通项公式教学重点:二项式定理及通项公式的掌握及运用教学难点:二项式定理及通项公式的掌握及运用授课类型:新授课教具:多媒体、实物投影仪教学过程一、新知学习:即展开式应有下面形式的各项:,,,,,展开式各项的系数:上面个括号中,每个都不取的情况有种,即种,的系数是;恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,恰有个取的情况有种,的系数是,有都取的情况有种,的系数是,∴.二、讲解新课:[来源:]1、二项式定理:2、二项式定理的证明。  (a

2、+b)n是n个(a+b)相乘,每个(a+b)在相乘时,有两种选择,选a或b,由分步计数原理可知展开式共有2n项(包括同类项),其中每一项都是akbn-k的形式,k=0,1,…,n;对于每一项akbn-k,它是由k个(a+b)选了a,n-k个(a+b)选了b得到的,它出现的次数相当于从n个(a+b)中取k个a的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理。3、它有项,各项的系数叫二项式系数,4、叫二项展开式的通项,用表示,即通项.5、二项式定理中,设,则三、典例分析例1.展开.例2.展开.例3.求的展开式中的倒数第项例4.求(1),(2)的展开式中的第项.例5

3、.(1)求的展开式常数项;(2)求的展开式的中间两项课堂小节:本节课学习了二项式定理及二项式展开式的通项公式课堂练习:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。