2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案

2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案

ID:8591335

大小:94.50 KB

页数:7页

时间:2018-04-02

2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案_第1页
2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案_第2页
2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案_第3页
2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案_第4页
2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案_第5页
资源描述:

《2016春北师大版数学九下2.4《二次函数的应用》(第2课时)word参考教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.4二次函数的应用(2)教材分析从题目来看,“何时获得最大利润”似乎是商家才应该考虑的问题.但是你知道吗?这正是我们研究的二次函数的范畴.因为二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.在教学中,要对学生进行适时的引导,并采用小组讨论的方式掌握本节课的内容,从而发展学生的数学应用能力.教学目标(一)教学知识点1.经历探

2、索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.(二)能力训练要求经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力(三)情感与价值观要求1.体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的

3、作用.教学重点1.探索销售中最大利润问题.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.教学难点[运用二次函数的知识解决实际问题.教学方法在教师的引导下自主学习法.教具准备投影片三张第一张:(记作§2.4.2A)第二张:(记作§2.4.2B)第三张:(汜作§2.4.2C)教学过程Ⅰ.创设问题情境,引入新课[师]前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y=x2开始,然后是y=ax2.y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2

4、+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.Ⅱ.讲授新课一、有关利润问题投影片:(§2.4.2A)服装厂生产某品牌的T恤衫,每件的成本是10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示每件降价0.1元,愿意多经销500件.厂家批发单价是多少时,可以获利最多?设批发单价为x(0

5、.[师]从题目的内容来看好像是商家应考虑的问题:有关利润问题.不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式.获利就是指利润,总利润应为每件T恤衫的利润(批发价一成本)乘以T恤衫的数量,设批发单价为x元,则降低了(13-x)元,每降低0.1元,可多售出500件,降低了10(13-x)元,则可多售出5000(13-x)件,因此共售出5000+5000(13-x)件,若所获利润用y(元)表示,则y=(x-10)[5000+5000(13-x)].经过分析之

6、后,大家就可回答以上问题了.[生](1)销售量可以表示为5000+5000(13-x)=70000-5000x.(2)销售额可以表示为x(70000-5000x)=70000x-5000x2.(3)所获利润可以表示为(70000x-5000x2)-10(70000-5000x)=-5000x2+120000x-700000.(4)设总利润为y元,则y=-5000x2+120000x-700000=-5000(x-.∵-5000<0∴抛物线有最高点,函数有最大值.当x=12元时,y最大=20000元.即当销售单价是12元时,可以获得最大利润,最大利润是2000

7、0元.例2某旅社有客房120间,每间房的日租金为160元,每天都客满.经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?让学生根据上面的利润问题的解法来解决这道例题.二、做一做还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行

8、交流.[生]因为表达式是二次函数,所以求橙子的总产量

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。