欢迎来到天天文库
浏览记录
ID:8582602
大小:57.00 KB
页数:6页
时间:2018-04-02
《2014人教a版高中数学必修三 3-1-1 《随机事件的概率》能力》强化提升》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【成才之路】2014高中数学3-1-1随机事件的概率能力强化提升新人教A版必修3一、选择题1.下列现象中,是随机现象的有( )①在一条公路上,交警记录某一小时通过的汽车超过300辆.②若a为整数,则a+1为整数.③发射一颗炮弹,命中目标.④检查流水线上一件产品是合格品还是次品.A.1个 B.2个 C.3个 D.4个[答案] C[解析] 当a为整数时,a+1一定为整数,是必然现象,其余3个均为随机现象.2.下列事件中,不可能事件为( )A.钝角三角形两个小角之和小于90°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的
2、和大于第三边[答案] C[解析] 若两内角的和小于90°,则第三个内角必大于90°,故不是锐角三角形,∴C为不可能事件,而A、B、D均为必然事件.3.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( )A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品[答案] D[解析] A,B都是随机事件,因为只有2个次品,所以“抽出的三个全是次品”是不可能事件,“至少有一个是正品”是必然事件.4.先从一副扑克牌中抽取5张红桃,4张梅花,3张黑桃,再从抽取的12张牌中随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这种事情( )A.可能发生B.不可
3、能发生C.必然发生D.无法判断[答案] C[解析] 因为12张牌中,红桃、梅花、黑桃中任两种的张数之和都小于10,故从12张扑克中抽取10张,三种牌一定都有.5.下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为( )A.①②B.③④C.①④D.②③[答案] D[解析] ①是必然事件;②中a>1时,y=logax单调递增,04、了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为B.频率为C.频率为6D.概率接近0.6[答案] B[解析] 抛掷一次即进行一次试验,抛掷10次,正面向上6次,即事件A的频数为6,∴A的频率为=.∴选B.7.下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4[答案] B8.从存放号码分别为1,2,…,10的卡片的5、盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119则取到号码为奇数的频率是( )A.0.53B.0.5C.0.47D.0.37[答案] A[解析] 取到号码为奇数的卡片共有13+5+6+18+11=53(次),所以取到号码为奇数的频率为=0.53.二、填空题9.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.[答案] 500[解析] 设共进行了n次试验,则=0.02,解得n=500.10.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了26、0000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为________.[答案] 0.03[解析] 在一年里汽车的挡风玻璃破碎的频率为=0.03,所以估计其破碎的概率约为0.03.11.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶,在这次练习中,这个人中靶的频率是________,中9环的概率是________.[答案] 0.9 0.3[解析] 打靶10次,9次中靶,故中靶的概率为=0.9,其中3次中9环,故中9环的频率是=0.3.12.一袋中装有10个红球,7、8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.[答案] 16[解析] 至少需摸完黑球和白球共15个.三、解答题13.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?[解析] 这个试验的基本事件构成集合Ω=
4、了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为B.频率为C.频率为6D.概率接近0.6[答案] B[解析] 抛掷一次即进行一次试验,抛掷10次,正面向上6次,即事件A的频数为6,∴A的频率为=.∴选B.7.下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4[答案] B8.从存放号码分别为1,2,…,10的卡片的
5、盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119则取到号码为奇数的频率是( )A.0.53B.0.5C.0.47D.0.37[答案] A[解析] 取到号码为奇数的卡片共有13+5+6+18+11=53(次),所以取到号码为奇数的频率为=0.53.二、填空题9.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.[答案] 500[解析] 设共进行了n次试验,则=0.02,解得n=500.10.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了2
6、0000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为________.[答案] 0.03[解析] 在一年里汽车的挡风玻璃破碎的频率为=0.03,所以估计其破碎的概率约为0.03.11.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶,在这次练习中,这个人中靶的频率是________,中9环的概率是________.[答案] 0.9 0.3[解析] 打靶10次,9次中靶,故中靶的概率为=0.9,其中3次中9环,故中9环的频率是=0.3.12.一袋中装有10个红球,
7、8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.[答案] 16[解析] 至少需摸完黑球和白球共15个.三、解答题13.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?[解析] 这个试验的基本事件构成集合Ω=
此文档下载收益归作者所有