欢迎来到天天文库
浏览记录
ID:8572951
大小:230.50 KB
页数:8页
时间:2018-04-01
《2012青岛版九上3.2《用配方法解一元二次方程》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2配方法解一元二次方程一、素质教育目标(一)知识储备点理解并掌握一元二次方程的配方法,能正确、熟练地运用配方法解一元二次方程,并使学生真正理解配方法的整个过程.在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”.(二)能力培养点通过配方法的整个过程的理解培养学生按规循律分析问题、解决问题的能力,培养学生观察、类比、归纳思维的能力,切实提高学生解方程的能力.(三)情感体验点使学生按照配方法的步骤一步一步地解方程让学生形成有条不紊的学习习惯,按照规律办事的思想观念,养成良好的品德修养,为将来的人生打下扎实的基础.二、教学设想1.重点:用配方法
2、解一元二次方程.2.难点:真正理解配方法的整个过程.3.疑点:为什么要用配方法解一元二次方程.4.课型与基本教学思路:新授课.本节课通过将一元二次方程变形,运用直接开平方的方法解方程,形成解一元二次方程的一个重要方法──配方法,并能运用配方法解一元二次方程.三、媒体平台1.教具、学具准备:自制投影胶片.2.多媒体课件撷英:【注意】课件要根据实际需要进行适当修改.四、课时安排1课时五、教学步骤(一)教学流程1.情境导入解方程:①x2+2x=5;②x2-4x+3=0.能否经过适当的变形,将它们转化为()2=a的形式,应用直接开平方法求解?2.课前热身提问:(1)什么是一元
3、二次方程的一般形式?(2)什么是一元二次方程的直接开平方法?(3)什么是一元二次方程的因式分解法?3.合作探究(1)整体感知:学生按照要求解.①原方程转化为x2+2x+1=6,(x+1)2=6,x+1=±,解得x=-1+,x=-1-.②x2-4x+4=-3+4,(x-2)2=1,所以x-2=±1,解得x1=3,x2=1.教师归纳概括:上面我们把方程x2-4x+3=0变形为(x-2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数,这样能应用直接开平方法求解,这种解一元二次方程的方法叫做配方法.(2)师生互动互动1提出配方时方程两边同时加上的常数是如何确
4、定的?你能发现什么规律?明确配方时,化二次项系数为1,通过变形,方程两边同时加上一次项系数一半的平方,将左边配成一个完全平方式,是配方法整个过程的重点.互动2配方法是一个重要的数学方法,它在很多地方有重要的应用,我们能总结出配方法的步骤吗?明确配方法的一般步骤是:(1)方程两边同除以二次项系数,将二次项系数化为1;(2)移项,使方程左边为二次项、一次项,右边为常数项;(3)配方,方程两边都加上一次项系数一半的平方,使方程左边为一个完全平方式,右边是一个常数的形式;(4)如果右边是非负数,两边直接开平方解这个一元二次方程.互动3我们能否对x2+px+q=0用配方法进行因
5、式分解?让学生自己完成,看谁又快又正确.明确对于含有字母已知数的因式分解,移项得x2+px=-q,配方得(x+)2=,x+=或x+=,所以,x1=-+,x2=--,为下节课ax2+bx+c=0(a≠0)通过配方法推出一元二次方程的根,打下知识基础.4.达标反馈(1)填空题:①x2-2x+(1)=[x+(-1)]2;②x2+6x+(9)=[x-(-3)]2;③x2-5x+=(x-)2;④x2+2mx+m2=(x+m)2;⑤x-3mx+m2=(x-m)2.⑥用配方法解一元二次方程2x2+3x+1=0,变形为(x+m)2=k,则m=,k=.(2)解答题:①用配方法解下列方程
6、:⑴x2-2x-5=0;⑵x2+x-1=0;⑶x2+x-=0;⑷x2-2+1=0;【答案】⑴x1=1-,x2=1+⑵x1=-+,x=--⑶x1=-,x2=⑷x1=1+,x2=1-②用配方法将下列各式化成a(x+h)2+k的形式.⑴-3x2-2x+1;⑵x2-x+1;⑶y2+y-2;⑷ax2+bx+c(a≠0);【答案】⑴-3(x+)2+⑵(x-)2+⑶(y+)2-⑷a(x+)2+5.学习小结(1)引导学生作知识总结:本节课学习了什么叫配方法,怎样运用配方法解一元二次方程,按照配方法的四个步骤正确、熟练地求一元二次方程的解.(2)教师扩展:(方法归纳)用配方法解一元二次
7、方程的关键是:方程两边都加上一次项系数一半的平方,但前提是二次项系数化为1,配方法的理论根据是直接开平方法.(二)拓展延伸1.链接生活链接一:如果一个一元二次方程有两个不相等的实数根,应当怎样表示?解答:这两个根的值分别为m、n(m≠n),那么可以表示为以下三种形式:(1)x1=m,x2=n;(2)x=m,或x=n(逗号可以省去);(3)x=m,和x=n.注意不要用“x1=m,或x2=n”这种形式,不能用“x1=m,且x2=n”这种形式.链接二:在什么情况下,解方程会出现增根?解答:我们知道,在方程两边可以加上(或减去)同一个数或整式,也可以乘以(或
此文档下载收益归作者所有