纳米tio2膜制备与光催化降解chcl3

ID:8520636

大小:41.50 KB

页数:12页

时间:2018-03-31

纳米tio2膜制备与光催化降解chcl3_第1页
纳米tio2膜制备与光催化降解chcl3_第2页
纳米tio2膜制备与光催化降解chcl3_第3页
纳米tio2膜制备与光催化降解chcl3_第4页
纳米tio2膜制备与光催化降解chcl3_第5页
资源描述:

《纳米tio2膜制备与光催化降解chcl3》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、纳米TiO2膜制备与光催化降解CHCl3 纳米TiO2可将许多有机化合物氧化、分解成CO2和H2O,在处理有机污染物方面有极好的应用前景[1~3],但粉末状纳米TiO2悬浮于光催化体系中存在流失、回收及分离等诸多问题[3]。近年来,国内外就纳米TiO2光催化剂的固定和纳米TiO2薄膜的制备做了许多工作,其中溶胶法制备纳米TiO2薄膜是目前研究最多的一种制备方法[4]。相对于化学气相沉积和溅射制膜而言,该法具有设备简单、容易控制、条件温和、能大面积制膜等优点。试验采用溶胶法在普通载玻片上以1.5mm/min的

2、浸提速度制备光催化薄膜,分别以SEM、XRD、UV对纳米TiO2薄膜进行表征,并进行了纳米TiO2薄膜光催化分解CHCl3的研究。1 试验内容及方法1.1 纳米TiO2薄膜的制备  溶胶制备方法见参考文献[5],得到稳定、均匀、清澈透明的淡黄色溶胶后,以洁净载玻片作基体,浸入溶胶中以浸渍提拉法制备,提拉速度为1.5mm/min。湿膜在100℃时干燥5min后,放入马福炉内以500℃焙烧1h,重复上述操作可得不同厚度的薄膜。1.2 纳米TiO2薄膜的表征  用H—600(Hittachi)电镜观察纳米TiO2

3、薄膜的表面状态和薄膜厚度;以D/MAX—3BXRD、Cu靶、35V—30mA来确定纳米TiO2薄膜的晶型和粒径;以UV—1601PC紫外可见分光光度计测量纳米TiO2薄膜在200~800nm范围内的透光率。1.3 光催化试验  在自制玻璃反应器中放入一定浓度的CHCl3水溶液和面积为5cm2的纳米TiO2薄膜,以8W的防水汞灯插入反应体系中,接口处用聚四氟乙烯薄膜严密封紧后进行电磁搅拌,按GB5750—85的标准方法测定CHCl3的浓度,以此评价纳米TiO2薄膜的催化活性。2 结果与讨论2.1 晶型、厚度与

4、透光率  以基本组分的溶胶分别浸渍提拉不同次数制膜,薄膜厚度可通过扫描电镜和重量法获得,如图1所示。  TiO2薄膜的厚度与提拉次数有很好的线性关系,第1次镀膜的厚度为0.13μm,第2次以后的每次镀膜增加的厚度为0.08μm。  向基本组分的溶胶中分别添加0.5、1.0、1.5、2.0g的PEG2000,浸提10次制膜,用电镜观察薄膜表面。当不加PEG2000时,TiO2薄膜由40~80nm的球型颗粒组成,且具有平整的组织;溶胶中加入PEG2000后,薄膜开始产生多孔结构,而孔的大小和数量与PEG2000

5、的投加量有关。当溶胶分别含有0.5、1.0、2.0g的PEG2000时,薄膜产生的气孔孔径分别为30~70nm、100~250nm和200~450nm。  在浸提次数相同的条件下,380nm处UV—VIS透光率与PEG2000的投加量的关系如图2所示。  由图2可见,随着PEG2000投加量的增加,多孔TiO2薄膜的透光率逐渐下降,这是由于随着PEG2000的增加,TiO2薄膜的气孔增多,这显著增加了TiO2薄膜的不均匀性,且孔径已接近入射光波长,散射增强,导致透光率显著下降。另外,XRD图谱显示,TiO2

6、薄膜晶型为锐钛矿型。2.2 催化活性  对CHCl3(100μg/L)体系分别进行光照(1.5h)、无光照催化(1.5h)、光照催化(1.5h)及空白对照试验。由试验前后的CHCl3含量检测结果可知,仅在自然光照射下的CHCl3无分解反应发生;在汞灯照射下、无TiO2薄膜催化剂时1.5h内只分解了1.8%;在自然光照射和TiO2薄膜催化剂存在时,1.5h内分解了6.2%;在汞灯照射和TiO2薄膜催化剂存在时,1.5h内分解了86.4%;空白对照试验显示试验体系对结果无干扰。以上这些说明  TiO2薄膜对CH

7、Cl3体系具有极高的光催化活性,可以很好地氧化分解CHCl3,其催化机理一般认为是:催化剂导带电子(或被俘获到催化剂表面的电子)还原溶液中的氧分子(受体)是反应的决定步骤,氧分子接受电子后形成超氧自由基或羟基自由基,具有极强的氧化能力,可将CHCl3氧化分解。因此光生电子和催化剂的共同作用是发生光催化作用的关键因素,而TiO2薄膜在汞灯照射下显示了极好的光催化活性。2.3 光催化的影响  纳米TiO2薄膜对CHCl3体系的光催化影响见图3a、3b。      由图3可见,随着反应时间的增长,CHCl3的光催

8、化分解率增加,残留量逐步减少,但几种孔径、厚度不同的TiO2薄膜对CHCl3的光催化分解有一定的区别。TiO2薄膜的孔径越大,在设定时间内光催化分解率越高(见图3a);TiO2薄膜的厚度对光催化分解率也有一定的影响,薄膜越厚,催化效率越高(见图3b),但孔径的影响更大。这可能是由于TiO2薄膜的孔径越大,对CHCl3的吸附能力越大,催化能力越强,因此吸附有可能在CHCl3的光催化分解中起关键作用,其具体的催化机理

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《纳米tio2膜制备与光催化降解chcl3》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、纳米TiO2膜制备与光催化降解CHCl3 纳米TiO2可将许多有机化合物氧化、分解成CO2和H2O,在处理有机污染物方面有极好的应用前景[1~3],但粉末状纳米TiO2悬浮于光催化体系中存在流失、回收及分离等诸多问题[3]。近年来,国内外就纳米TiO2光催化剂的固定和纳米TiO2薄膜的制备做了许多工作,其中溶胶法制备纳米TiO2薄膜是目前研究最多的一种制备方法[4]。相对于化学气相沉积和溅射制膜而言,该法具有设备简单、容易控制、条件温和、能大面积制膜等优点。试验采用溶胶法在普通载玻片上以1.5mm/min的

2、浸提速度制备光催化薄膜,分别以SEM、XRD、UV对纳米TiO2薄膜进行表征,并进行了纳米TiO2薄膜光催化分解CHCl3的研究。1 试验内容及方法1.1 纳米TiO2薄膜的制备  溶胶制备方法见参考文献[5],得到稳定、均匀、清澈透明的淡黄色溶胶后,以洁净载玻片作基体,浸入溶胶中以浸渍提拉法制备,提拉速度为1.5mm/min。湿膜在100℃时干燥5min后,放入马福炉内以500℃焙烧1h,重复上述操作可得不同厚度的薄膜。1.2 纳米TiO2薄膜的表征  用H—600(Hittachi)电镜观察纳米TiO2

3、薄膜的表面状态和薄膜厚度;以D/MAX—3BXRD、Cu靶、35V—30mA来确定纳米TiO2薄膜的晶型和粒径;以UV—1601PC紫外可见分光光度计测量纳米TiO2薄膜在200~800nm范围内的透光率。1.3 光催化试验  在自制玻璃反应器中放入一定浓度的CHCl3水溶液和面积为5cm2的纳米TiO2薄膜,以8W的防水汞灯插入反应体系中,接口处用聚四氟乙烯薄膜严密封紧后进行电磁搅拌,按GB5750—85的标准方法测定CHCl3的浓度,以此评价纳米TiO2薄膜的催化活性。2 结果与讨论2.1 晶型、厚度与

4、透光率  以基本组分的溶胶分别浸渍提拉不同次数制膜,薄膜厚度可通过扫描电镜和重量法获得,如图1所示。  TiO2薄膜的厚度与提拉次数有很好的线性关系,第1次镀膜的厚度为0.13μm,第2次以后的每次镀膜增加的厚度为0.08μm。  向基本组分的溶胶中分别添加0.5、1.0、1.5、2.0g的PEG2000,浸提10次制膜,用电镜观察薄膜表面。当不加PEG2000时,TiO2薄膜由40~80nm的球型颗粒组成,且具有平整的组织;溶胶中加入PEG2000后,薄膜开始产生多孔结构,而孔的大小和数量与PEG2000

5、的投加量有关。当溶胶分别含有0.5、1.0、2.0g的PEG2000时,薄膜产生的气孔孔径分别为30~70nm、100~250nm和200~450nm。  在浸提次数相同的条件下,380nm处UV—VIS透光率与PEG2000的投加量的关系如图2所示。  由图2可见,随着PEG2000投加量的增加,多孔TiO2薄膜的透光率逐渐下降,这是由于随着PEG2000的增加,TiO2薄膜的气孔增多,这显著增加了TiO2薄膜的不均匀性,且孔径已接近入射光波长,散射增强,导致透光率显著下降。另外,XRD图谱显示,TiO2

6、薄膜晶型为锐钛矿型。2.2 催化活性  对CHCl3(100μg/L)体系分别进行光照(1.5h)、无光照催化(1.5h)、光照催化(1.5h)及空白对照试验。由试验前后的CHCl3含量检测结果可知,仅在自然光照射下的CHCl3无分解反应发生;在汞灯照射下、无TiO2薄膜催化剂时1.5h内只分解了1.8%;在自然光照射和TiO2薄膜催化剂存在时,1.5h内分解了6.2%;在汞灯照射和TiO2薄膜催化剂存在时,1.5h内分解了86.4%;空白对照试验显示试验体系对结果无干扰。以上这些说明  TiO2薄膜对CH

7、Cl3体系具有极高的光催化活性,可以很好地氧化分解CHCl3,其催化机理一般认为是:催化剂导带电子(或被俘获到催化剂表面的电子)还原溶液中的氧分子(受体)是反应的决定步骤,氧分子接受电子后形成超氧自由基或羟基自由基,具有极强的氧化能力,可将CHCl3氧化分解。因此光生电子和催化剂的共同作用是发生光催化作用的关键因素,而TiO2薄膜在汞灯照射下显示了极好的光催化活性。2.3 光催化的影响  纳米TiO2薄膜对CHCl3体系的光催化影响见图3a、3b。      由图3可见,随着反应时间的增长,CHCl3的光催

8、化分解率增加,残留量逐步减少,但几种孔径、厚度不同的TiO2薄膜对CHCl3的光催化分解有一定的区别。TiO2薄膜的孔径越大,在设定时间内光催化分解率越高(见图3a);TiO2薄膜的厚度对光催化分解率也有一定的影响,薄膜越厚,催化效率越高(见图3b),但孔径的影响更大。这可能是由于TiO2薄膜的孔径越大,对CHCl3的吸附能力越大,催化能力越强,因此吸附有可能在CHCl3的光催化分解中起关键作用,其具体的催化机理

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭