欢迎来到天天文库
浏览记录
ID:8388247
大小:777.50 KB
页数:10页
时间:2018-03-24
《高中数学《一元二次函数方程和不等式》公开课优秀教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:一元二次函数、方程和不等式(衔接课)一、教学设计1.教学内容解析在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好.本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而
2、是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析
3、几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面.根据以上分析,本节课的教学重点确定为教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用.2.学生学情诊断本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的
4、解法,能利用函数图象解决简单的方程和不等式问题.但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式.3.教学目标设置(1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系;(2)能够用
5、二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性;(3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养.4.教学策略分析本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆锥曲线等核心概念必然联系的高度,着眼于继续学习,而又必须遵循数学的自然顺序,避免后继内容的前移。这种课的关键是整合和
6、提升,形成基本套路并了解它在进一步学习中的基本价值。这些都需要问题驱动,循序渐进,在师生互动中不断地归纳总结。回顾整合提升展望教学流程:5.教学过程环节一:回顾师:同学们,我们初中学过一元一次不等式,同学们说说这个不等式的解集是多少啊?生:.师:诶,怎么算出来的啊?哪位同学来说说?生:把移到右边去,再不等式左右两边同时除以3.师:你的解题依据是什么呢?生:不等式的性质.师:很好,请坐,这位同学利用不等式的性质,从代数的角度把这个不等式解出来了,还有其它的解法吗?生:可以先画出一次函数的图象,从图象可以看出不等式的解
7、集.师:好,我们先画图象,怎么画这个函数的图象?生:找两个点.师:找那两个点比较好?生:与坐标轴的交点.师:与轴的交点是多少?生:.师:这是怎么出来的啊?生:令.即,这个方程的根.师:很好,与轴的交点的横坐标恰好是对应一次方程的根.与轴的交点是多少?生:令.得,交点.师:所以这个不等式的解集就是?生:,即图象在轴上方时所对应的的范围.师:很好,请坐,由此可以看出一次函数、一次方程和一次不等式三者之间有着密切的联系,谁来概括一下?生:一次方程的根就是一次函数图象与轴交点的横坐标(即一次函数的零点),一次不等式的解集就
8、是一次函数图象在轴上方时所对应的的范围,一次方程的根也是一次不等式解集的端点师:同学们再想一想,这三者之间为什么会有关系呢?生:……师:我们从代数表达式来看一看,一次方程、一次不等式和一次函数,这个三个表达式有什么共同点?^……,都含有一次式,对吧,所以它们之间有关系.【评析】回顾初中知识,利用一次函数的图象理解一次方程和一次不等式.由三个“一次”,类比引出
此文档下载收益归作者所有