二次函数和一元二次方程和一元二次不等式

二次函数和一元二次方程和一元二次不等式

ID:22255925

大小:597.00 KB

页数:8页

时间:2018-10-28

二次函数和一元二次方程和一元二次不等式_第1页
二次函数和一元二次方程和一元二次不等式_第2页
二次函数和一元二次方程和一元二次不等式_第3页
二次函数和一元二次方程和一元二次不等式_第4页
二次函数和一元二次方程和一元二次不等式_第5页
资源描述:

《二次函数和一元二次方程和一元二次不等式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二次函数与一元二次方程和一元二次不等式二次函数是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量取任意实数时的最值情况(当时,函数在处取得最小值,无最大值;当时,函数在处取得最大值,无最小值.方程与函数不仅是初中数学中的重要内容,也是高中数学学习的重要内容,方程与函数之间存在着密切的联系,二次函数的图象与x轴交点的横坐标即为相应的二次方程的解,课程标准要求我们能利用二次函数的图象求二次方程的近似解。本节我们将进一步研究一元二次方程与函数问题,研究当自变量在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1

2、】已知二次函数的部分图象如图所示,则关于的一元二次方程的解为.分析:因为二次方程的根为二次函数的图象与x轴交点横坐标。根据已知条件,可知抛物线的对称轴为直线;根据图象可知抛物线与x轴的一个交点的横坐标为,所以利用抛物线的对称性知抛物线与x轴的另一个交点横坐标为―1,因此,方程的解为3和-1。本题利用抛物线的轴对称性求抛物线与轴的交点坐标,从而求出相应的一元二次方程的根。【例2】二次函数是常数中,自变量与函数的对应值如下表:12311(1)判断二次函数图象的开口方向,并写出它的顶点坐标.(2)一元二次方程是常数的两个根的取值范围是下列选项中的哪一个.①②③④分析:本题以表格的形式给出二

3、次函数的部分对应值,解题时可以选定三对值,求出二次函数解析式,再判断开口方向,求出顶点坐标。但这样去做计算量较大,观察表格的特征发现,与等距离的x对应的函数值相等,所以直线是抛物线的对称轴,因此抛物线的顶点坐标为(1,2);观察表格发现:当时,y随着x的增大而减小,当时,y随着x的增大而增大,所以抛物线的开口向下。(2)一元二次方程是常数的根即为抛物线与x轴交点的横坐标,观察表格发现:与0之间一定有一个x的值,使=0;2与之间一定有一个x的值,使=0,所以的两根的取值范围是,故答案为③【例3】已知函数的图象如图所示,那么关于的方程的根的情况是()A.无实数根B.有两个相等实数根C.有

4、两个异号实数根D.有两个同号不等实数根     分析:本题以图象的形式给出信息,要判断关于的方程的根的情况,因为可化为,即,所以,方程的根即为抛物线与直线y=-2的交点横坐标,作直线y=-2,观察图象可知直线与抛物线的交点在第四象限,因此交点横坐标都为正,故答案为D。本题把方程的根转化为抛物线与直线的交点横坐标。【例4】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根. (2)写出不等式的解集. (3)写出随的增大而减小的自变量的取值范围. (4)若方程有两个不相等的实数根,求的取值范围. 分析:本题以图象的形式给出信息,考查了二次函数、二次方程、二次不等式这三个

5、二次之间的关系。(1)方程的根即抛物线与x轴交点的横坐标,观察图象得方程的两根为,;(2)不等式的解集即抛物线位于x轴上方的那一段的x的范围,观察图象得不等式的解集为;(3)抛物线的增减性是以对称轴为界,抛物线的对称轴为,结合图象得对称轴右边随的增大而减小,所以;(4)方程的解为抛物线与直线的交点,所以当时,抛物线与直线有两个交点,即方程有两个不相等的实数根的的取值范围是。【例5】当时,求函数的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量的值.解:作出函数的图象.当时,,当时,.【例6】当

6、时,求函数的最大值和最小值.解:作出函数的图象.当时,,当时,.由上述两例可以看到,二次函数在自变量的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量的范围的图象形状各异.下面给出一些常见情况:【例7】当时,求函数的取值范围.解:作出函数在内的图象.可以看出:当时,,无最大值.所以,当时,函数的取值范围是.【例8】当时,求函数的最小值(其中为常数).分析:由于所给的范围随着的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数的对称轴为.画出其草图.(1)当对称轴在所给范围左侧

7、.即时:当时,;(2)当对称轴在所给范围之间.即时:当时,;(3)当对称轴在所给范围右侧.即时:当时,.综上所述:在实际生活中,我们也会遇到一些与二次函数有关的问题:【例9】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量(件)与每件的销售价(元)满足一次函数.(1)写出商场卖这种商品每天的销售利润与每件销售价之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。