【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练

【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练

ID:83416680

大小:16.38 MB

页数:162页

时间:2023-07-02

上传者:灯火阑珊2019
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第1页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第2页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第3页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第4页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第5页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第6页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第7页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第8页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第9页
【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练_第10页
资源描述:

《【22份】2019高考浙江数学优编增分练标准练分项练解答题突破练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

ூ22௃2019ὃᦪᑖ᪗ᑖ⚗⚪ẚ20193ᨴ1[74ᑖ]⚪᪗.....................................................2[74ᑖ]⚪᪗.....................................................7[76ᑖ]10+7᪗1....................................................................................................12[76ᑖ]10+7᪗2....................................................................................................20[76ᑖ]10+7᪗3....................................................................................................29[76ᑖ]10+7᪗4....................................................................................................3810+7ᑖ⚗1!ᔠஹ$ᦪ%&⚪...........................................4710+7ᑖ⚗2ᭆ᳛.....................................................5210+7ᑖ⚗3ᦪᦻᓄ...................................................5710+7ᑖ⚗4+,-ᦪ%+,.........................................6510+7ᑖ⚗5/☢ᔣ2...................................................7310+7ᑖ⚗63456...................................................8210+7ᑖ⚗7ᦪᑡ.....................................................9210+7ᑖ⚗889:.....................................................9910+7ᑖ⚗9ᙊ┵=>..................................................10710+7ᑖ⚗10-ᦪḄ@A%ឋC.........................................11510+7ᑖ⚗11-ᦪ%Dᦪ..............................................123+,-ᦪ%+,.....................................................131

1...............................................................135ᦪᑡ.................................................................143+᪆.............................................................148ᦪᦪ.............................................................155[74ᑖ]⚪᪗1.2018•ḕ⊞ᓝ᪥ὶὃᦪ/U=sinx+"+sinx—*+cosx.1ᐔ0Ḅᨬ$%ᕜ'(2ᙠ*ABC+,-4=$,ZVIBCḄ☢/0$,AB=2,BCḄ1.1ᵫ⚪45ᐔt=2sinG+?,ᦪ7xḄᨬ$%ᕜ'7=2ᐔফᵫ4=2sinA+7=$,5A4ᡈA=(.:A;<,>*ABCḄ☢/S=%BX4cxsin4=$,.AC=2.(BC2=AB?+Ad2—2ABsc.cos4=2$f+2?—2X2$X2cosὌ=4,BC=2.:A=W<,•.'*ABCḄ☢/S=(ABX4c=$,,AC=1.VBC2=12+2V32=13,.BC=y[H.AB,BCḄ102ᡈMW.2.2018•ḕCD+EὶὃᙠFῪHIA8C£+᝞K1,AB=4,BC=CD=DA=2,F0LMCOḄ+D,E,M0LM48BḄD,AE=EM=1,NOPI4EFDQEFᢚS᝞K2.

2DFCAEMEMBK1K2(1)TUAM஻W☢BCD((2)ᙠK2+,XB£>=ᓧ,ZLCOW☢8CFEᡠᡂ]Ḅ%^_.পTabcCM.EM'EM//FCdEM=FC=1,PIEFCM0WePI,.EF஻CMEF=CM.fᳮhTPIEFZM0WePI,.'.EF//ADdEF=AD,.CM//ADdCM=AD,PIAOCM0WePI,.'.AM//DC,iU஺CuW☢BCD,AMQW☢BCD,஻W☢BCD.(2)kD஺lQHLEFmD“,bcB”,CH.EMᙠRtZ\OF”+,᧕NDFH=60஺,DF=1,p஺“ᙶ,FH=3,3ᙠ*BE"+,EH=EF-FH=;,᧕NHEB=60஺,,EB=3,BH1=^5)2+32-2x|x3cos60°=Eᙠ*3OH+,ᙶ,BH=,ᓧ,.,.s+st▬,:.DHBH,XVDHLEF,BHCEF=H,BH,EFu☢BCFE,W☢BCFE,

3.CH0CDᙠW☢BCFEᑁḄ{|,/.ZDCH0CDW☢BCFEᡠᡂḄ],ᙠAFCH,᧕NCFH=120஺.CH^FH2+CF2-2FHCFCOS120°=^,ᙠRtACD/7+,CD=7DH?+C#=,•ஹ.DH••sinDCHCDjQ,ᓽCOW☢BCFEᡠᡂ]Ḅ%^_0.3.(2018•ḕ+ᨴὃ)ᦪ_/U)=(a—()/+lnx(aeR).(1):a=l<,TUᦪ¢ᙠ£¤Ḅ¥D((2)ᙠ(1,+8)B,ᦪᐔr)ḄK§ឤᙠZLy=2axḄª«,¬ᦪaḄ_¯.(1)Ta:a=l<,X%)—2<+lnx,/'(x)=x+U>0(x>0),ᦑ_/(x)ᙠ(0,+8)Bᓫ·⌴¹,iº)=*¤1<0,Xe)=l+y>0,ᦑᐔv)ᙠ(0,+8)B¢ᙠ£¤¥D.ফ½g(x)=/(x)—2ax=(஺¤஺¿¤2ax+Inx,ᑣg(x)ḄÂÃÄ0(0,+°°).ᙠÅÆ(1,+8)B,ᦪy(x)ḄK§ឤᙠZLy=2axḄª«FÇmg(x)<0ᙠÅÆ(1,+~)Bឤᡂ.c,1(2஺-1*¤2+1(X-1)[(2(7-1)X-1]o-g(x)=(2a-l)x-2a+-=-----------------=------------------,জXa>|,½g'(Ð)=05᩽_D,ᑁ=1,Ò=ᓃ':ᵯa=1,ᓽ<,ᙠ(M,+8)Bᨵ/(x)>o,×

4ঝX஺ᑢ,ᑣᨵ2a-lW0,×<ᙠÅÆ(1,+8)Bឤᨵå஺)<0,æg(x)ᙠÅÆ(1,+8)BØçᦪ,⌕ég(x)<0ᙠ×ÅÆBឤᡂ,êëìíg(l)=—q—90,ᓽðß>111Ḅ_¯Øñ¤(,|.4.(2018•ḕó᪥ôlὶὃ)õᱥLCUf=2p)0>O),dõᱥLCᙠDP(l,./(I))ᜐḄᑗLü᳛0þZL/õᱥLÿḄA,B,APᚖBP.(1)/ᙶ᪗(2)8P"y$M,&"'$N,)὚὜Ḅᨬᜧ/.f1প2ᵫ>=67=89:x=l=7)=>!!p=2,P%?ᱥḄABCf=4).ஹ1199GA(2f8,H)H7^28(2/22)K1,£),1122^i~4r2-4•••Rᡝ.)/>=T=7U=7=V1117ᓄX7Y2+2«1+ᑗ+=0(*)&ᱏV411+2`.•4abT=M.A8ḄABCyVᱏ="224),ᓽ2y=(t+ti)x—2t\t}2917e(*)fgᐭABḄAB7K8+ᑗ(i+1)+j-2y=0,17kx+l=0,2—2y=0,m7n=-1,y=A8(-1,„

5(2)mᵫ⚪qGḄr᳛Ck,.ᑣBMḄABCᔆ=v—1),1ὶx஻1z1)'7,_4{+|_]=0,.d=4y,/=16V+4>0,79ᑭᵨ᪷ᦪḄᐵ7+=4,•=44V1,ᵫAPJ_8P,ᳮ7:=VV11᧕7M=a+1,XM=0,16(2/—1)+2)=-32(J-1J2+50<50,4:n=§=ᡂx..\AP\\BP\,,\MP\\NP\^1ᐭ/,•1,505.(2018•ᦟ⁐ὶ〉ឋὃ£)¤¥⚗ᦪᑡ¨©ª«¬00),f(x)=cosx—1<0,»)ᙠ(0,+8)9ᓫ¾⌴À.'./(x)

60<©+]<1.VO<«1<1,.01,->1,,,,,—>1,©a-\a-\a-2஻2nnnÕÖ7ᓝV!>஻V1,V1+ᓝ>"%$1Cl)iCl]Ct"Cl|n:”=1=9fÙᡂx....:)2=G)ᡡ^2«Lg%Ha”T<2f\/஻—1—2),y[a2<2(yl2—1),`q^jvl,ÕÖ7S஻<2(—1+Ù-----7஻-1+5)+1=2/V1.:஻=1=5]=஺]<1=2ÚV1,Ùᡂx.Û9S<2y[n—1.n[74ᑖ]⚪᪗1.2018•ḕÝ᪥ßàὃẆáὶâὶὃãäåᦪ/ÓXã=2sin2Ó-x—æcos2x.1ᓻãḄᨬæ¥ᕜé¶ᓫ¾⌴êëì7T2:xe[0,=åᦪ»ãḄ/í.

7îï1VU=2sinVV5cos2x=1—coseV2j—æcos2x=1—sin2xVæcos2x=1-2sinÓ2x+5.ᡠË/UḄᨬæ¥ᕜéCᐔjrTT37rk2+22ᐔñ2%+1ñj+2ᦇᐔᦇ£Z,m7kGZ,TT7TEᡠË/U)Ḅᓫ¾⌴êëìC[T+E,T+E)Ukz.(2):xG0,ó=2x+|cIy,sin(2x+Uᙶ,1,ᡠË/)G[—1ôVæ].2.(2018õö÷ø)᝞úᙠûü┵þVA8CCÿ☢PC஺☢A8CQ,☢ABCOEḄAB=2a,BC=a,PC=PD=y[2a.(1)PC஻☢BQE(2)AC☢PADᡠᡂḄ.(1)4CB஺Ḅ஺!EO."☢ABCOᡠ#஺ACḄ.ᙠ%&CEᵨḄᡠ#EO//PC.(EOu☢BDE,PC஺☢BDE.ᡠ#PC஻☢BDE.

8(2),ᙠ%-<:£)DC=2a,PC=PD=@,ᡠ#஺123/5+31ᓽPCLPD."☢PCOJ•☢ABCD,=☢3CQC☢A8C£)=CQ,ADLCD,ACu☢A8C£>,ᡠ#AD_L☢3CZ),ᦑAD_LPC.ADCPD=D,AD,POu☢%O,ᡠ#PUL☢PAD.ᦑ/%CLMAC☢᳘஺ᡠᡂḄ.ᙠRt%QCAC=y/5a,PC=y12a,ᡠ#smN᝞C—ACQ“X5ᓽAC☢PADᡠᡂḄZ.3.\]^_ᦪᑡb”“dḄ_dWO,ᐸh"⚗kS“mn+஺8=22,=“4,Sp2ᡂ^qᦪᑡ.(1)ᦪᑡb”“dḄs⚗t1113(2)m7Y=T+TH---1■17,.1.,1•2=5+++

9/᧡+e22Xv~4.2018•ḕ᪥ὶὃ\]ᙊG/+/=ḄᯖM2.3GX=¡¢PAi—a,0,A2a,0Ḅ¥᳛§¨Xপ᫜ᙊCḄ«¬2Pᙠx¯«°±PᙊGḄᑗ/³ᱥC2/2µ¶4B¸Pᐵ¶º஺Ḅ»¼Q,%QAB☢¨ḄᨬQ.,3¾yoxW±a,m'iJixoyp+axoyp-a-xoy-pa1ÄÅ+Æ=1,(=c=l,/.6F2=2,/?2=1,2ᓽᙊGḄ«¬5+)?=1.(2)ᑗ/Ḅ«¬A(xi1Ì)B(x,Ì)2a2=1,ᵫ<2(2Í+1)x2+4k/nx+2m"-2=0,y=kx-\-m,(/=16ÎÏ2-4Q᮱+1)(2"[2—2)=0,Ò=22+1.y=x~.9ÓᵫÔ/XÕXÖ=0,y=kx+tn9/=9+4"»0,ᓽÖ2+8ÖX1>0,ᓽÏ>—4+qr^ᡈ“0,=Ò21,Ö21,/.\AB\=71+ḄXᑘ=#1+á,[1+4Ö.1ᑭ஺ᑮA3Ḅãd=4T+!?9•஺Pᐵ¶ºḄ»¼,

10***S&ABQ=2s380=|AB|.d=|஻?|æᯠ+4/%lm2+8m-1=1è/---2--------':;ᦪkn)=[mTஹJ>+”~éᯠê”)ᙠ[1,+8)ëìᦪ,•'•SAABQ^X1)=2.ᓽ%QA5☢¨ḄᨬQ2.5.\]ìᦪy(x)=(3—4—+஻(x>0,eR).a(1)஺>Xᔁ°ᑨïìᦪ7U)Ḅᓫñឋ(2)4x)ᨵ¸ô᩽°mtx)Ḅ᩽ᜧQ¶᦮ᦪø஻?ḄᨬQ.,(1)ᵫ⚪(%)[—eA+(3-x)ev]jc-(3--x)ex—a(-x2+3x—3)eA—=ߟ30)«ùXᵫ¶Xf+3x—3W—,<0,—eA<—1<0,,3eA>l,(—x+3x—3)eAXᩈᡠ#(Xf+3x—3)e*—஻<0,?@f(x)<0,¶M«r)(0,+8)Ḅûìᦪ.«ù2ü/?(x)=(—x2+3x—3)eA—a,ᑣ஻஺)=(X#+■᮱,0<¥<1°h1(x)>0,஻(x)ëìᦪÿ>1h'(x)<0,஻(x)ᦪ.ᦑ(ᙠx=lᜐ᩽ᜧᨬᜧ.ᑣ(x)max=஻(l)=—e—a3-4ᡠ஻a)max=/z(l)=-e—a<0,/U)(0+8)Ḅᦪ.(2)/z(x)=(-x2+3x-3)ex-6Z,ᑣ/?'(%)=(-/+x)e",'0<%<1hf(x)>0,(ᦪ;'x>lh'(x)<0,(x)ᦪ.'x*++8(1)*+,8.

11ᵫ7U0ᨵ23᩽4ᡠ5x0=oᙠ50,+80ᨵ23:;<᪷ᓽ஻5x0=5—W+3x—30e*—஺=0ᙠ50,ᓝ80ᨵ2:;<᪷x”x5xi0,RSᑴ£(0,1),ᵫ஻(l)=-e—஻>0,33--e24+3<0,(,ᡈ+3\-3)e*2—aX5Y20=’,=0,ᓽe*2=—%,+3X2-3'(#)(3—•ᔊ)6"+aᡠᐗ0_ᜧ=«/5120=\ᓝe~ciX2~2agyte)=i_3&+3'(*)[t=X2—2=>X=t+2(5—,12.ᵫḄ4=e*(—%+312—3),ᐭ(*)|M)=(2—X2)e*2,5X20=51,ᔣ0e2<0ឤᡂ,ᦑ1"20=52—M0e"251,9Ḅᦪ,ᡠ⚪}Ḅ᦮ᦪḄᨬ3.[76ᑖ]10+7᪗11.Sᔠ4={£2]?,3x,40},B={x\0<

12x<2]ᑣAA8ḄḄ3ᦪ509A.3B.4C.7D.8

13ᫀcM+᪆4={XGZ|?-3X-4W0}={XGZ|-1WXW4}={-1,0,1,2,3,4},B={x|O0,x<—1ᡈx>3,...y=x2-2x—3=5x-1K-4ᙠ5-8,-10ᦪᙠ53,+80(ᦪXy=log|Xᙠ50,+80ᦪ2ᙠ5,8,—10(ᦪᙠ53,+80ᦪ.■:QZ[T—y[5<—y[3<-1,.,^—VT

14xW2,5.§S<ᦪx,yøùᩩ¶ú,2>+220,ᑣ2=ûḄý50yஹx+y+2N0,24一-3J43--2J3-3-ᫀC+᪆᝞▢ᑖᡠḄᒹ,z=fᦋᑏ124ᡠᑁḄay5,0!"Ḅ#᳛abk,ᑣ&'%),一3ᡠZC(—8,-1U:-4一6.+,ᦪᑡ/01✌⚗1,45d60Ḅ75ᦪᑡ8஺2Ḅ=oᦪᑡ/;017<ᦪ=Uᐸ?/?2=-2,@=16,)ᦪᑡc஻0BCc஻=aD஻ᑣIcil+lczl+LH------HGJ7E()A.3+(2/?-3)2rt+IB.3+(2஻-3)2"C.3&(2M&3)2஻D.3+(2஻+3)2஻ᫀB+᪆ᵫ⚪J,(஻i++2i/)=ai+7d,஻]=1,dWO,Kd=2,ᡠ஻஻=஻]+(஻-1)d=2n—l(஻eN*).Oᦪᑡ/%0Ḅ4<q,ᑣ/=Q=—8,ᡠq=-2,ᡠS=(—2)"T(஻GN"),ᡠᓃ|=|(2஻-1)(&2)"71=(2஻-1)2"T,ᡠ|ci|+|c2l+|c31H-----F|c„|—1X20+3X2I4---V(2஻—1)2"W7X=1X2°+3X214------F(2n-l)2n-1,ᑣ27X=lX2I+3X22d------\-(2n~l)2",

15YZ[\K7X=—2(2i+2?+…+2'1)+(2஻-1)2"—1=3+(2஻-3)2",ᦑ⌱B.7.Oij"ClJ-^=l(«>0,/»0)ḄYᩩuv"w[ᚖy⚔ᑮ&ᩩuv"Ḅ|}1,ᑣij"Ḅ&~ᯖᑮ&ᩩuv"Ḅ|}()A.2BV2C.2D.4ᫀB22+᪆ij"Cl᜛&=1ḄYᩩuv"w[ᚖyᡠuv"y=ir,ᡠa=A⚔ᑮ&ᩩuv"Ḅ|}1,ᡠ?jᓽ⊤r22ᡠda=b=e,ij"CḄ&1=1,ᡠij"Ḅ&~ᯖᑮ&ᩩuv"Ḅ|}b=yj2.28.+,M,Nij"^—y2=iᐵEᙶ᪗஺ḄYij"EM,Nr11Ḅ)y"PMḄ#᳛Ḅ¡£1¤2,ᑣy"PNḄ#᳛Ḅ¡£1()11B---82?2JD-L-2,&¦52.ᫀC+᪆OM(x,%)M&©—No)P(m,/t)(mW±%o),0n-yn+yt()()kpM—…1,kpN—I•mXom-rxo2P,M.Nᙳᙠij"³■&y2=lYZ[\Kµ^(஻—%)(஻+%)=0,஻&3()஻+)o1¶2._1ᓽ6¸,¹£=6ᡠdkpM-kpN=W1»ᐷ½W2,ᓽᔺ¿W2,KEWZpwWg,ᦑ⌱C.oZ9.&᣸12~ÇÈᙶÉ4~ÊËḄᡂᕒÎ~ÊËÏ13Ð)Î~ÊËḄᡂᕒᐰᙶᙠ&Ò,

16ᑣ6ÓḄᙶÔÕᦪA.A^A13B.AlAi4ᘊD×ᫀB+᪆12~ÇÈᙶÉ4~ÊËḄᡂᕒÎ~ÊËÏ13ÐØ᝞ÚlᐜᑖÜÝ1,2,3,4ÊËḄ3~ÐÞ᣸ᙶᙠ&ÒᔜᨵA9Õ6ÓḄᙶÔáâ4~ÊËãᐰ᣸ᑡᨵAlÕ6ÓḄ᣸Ô.᪷åᑖæçÔèᦪᳮKÎ~ÊËḄᡂᕒᐰᙶᙠ&ÒᐳᨵAyAXÕ6ÓḄᙶÔ.10.᝞ᡠᙠë☢í?îAjBiCQiADDA,ABBMiᙳïX{M1Ḅ?”ᙠñò¤4,óô☢AB஺ᡠᡂḄïõ¡ᙶö÷☢A—A”&BḄᜧÊᫀC+᪆•.•îAiBCQi,ADD\A\,ABBiAᙳï,ë☢íABOSABCi⊡ᡂïíABC஺&ASG஺”᝞ᡠOᐸúû1,!üA\C,ACDC\A]G,99..A\A_1•4ýÊ_3.••ACóô☢ABDᡠᡂḄïõ¡þ.»4”óô☢A8஺ᡠᡂḄïõ¡ÿAC,☢AACG:.HbA\CfGMḄ.'JBDLAC,BDlAtA,AC,☢4ACGᑁḄ.^.B஺_L☢A|ACG

17AiCu☢AACC”...BCAiC,ᳮBCJACgBD,8G☢BG஺ᑁḄ.A|CJ_☢BCiD,HM,HBU☢BCQ1HB,☢Ḅ☢!N8HM.᧕&RtACWM^RtAC^AiBD=BCi=GD=^,M8஺Ḅ+AC\MLBM,BM=-tanNBHM=^=®ZrliVlvJ/BHM=60஺,•☢A-AxH-BḄᜧ2!60°.11.7(஻+i)(l—Z?i)=3—i(஻i@ᦪᓫC)ᑣ஺+Z?=Ez=஻+bi,ᑣ|z|Hᫀ32J+᪆L!(a+i)(l—N)=(“+P+(1-ab)i=3-i,ᡠR஻+b=3,l—஺S=—1,ᑣa+b=3,ab=2,ᡠR|z|=7a2+b?=N(a+b)2_2ab=N9-4=ᩈ.12.UVWXYZᙢᙳᒴḄ^_-`aᨵcY^_d☢ᔣfUghijklᡂnᑣcjklᡂnḄᭆ᳛,ᙠ4jkl+ᡂnjᦪXḄstE(X)=.3Hᫀ3J+᪆VWXYZᙢᙳᒴḄ^_ᐳᨵxyz{|}~(dd)(d)(d)()ᦑcjklᡂnḄᭆ᳛ᑣᡂnjᦪXᡠRE(X)=4x[=3.13.E⚗(2x+c)”Ḅ+ᡠᨵ⚗Ḅ⚗ᦪḄ!32,1Ḅᦪ160,ᑣ஻=a=.Hᫀ5±2J+᪆2"=32,."=5,⚗Ḅ⚗k__k_57+1=ᡈ(2x)5-*=c^25-Vx-i,-5c=3Uk=4,C?X2Xa4=160,Ja=±2.14.&Ḅ᝞ᡠᑣ¡Ḅᨬ£¤Ḅ£¥!¦!

18Hᫀᑏ15J+᪆¡cy¨☢!©ªḄx¤┵ᐸ᝞+P—ABCOᡠᐸᨬ£¤Ḅ£¥®¯N=°±ᐸ¦V=|x1x2+4X3X5=15.15.&²ᦪyx=lnx+l—2Ḅ³Ḅcᩩᑗ!y=ar+b,ᑣ§Ḅᨬ2·.Hᫀl-e?J+᪆ᑗ¸¹+6ᙠxºfḄ»¼c½¾¿ÀḄᨬ2·Á◤¿ᑗy=ax+6ᙠxºfḄ»¼Ḅᨬᜧ·.L!/஺Ä=ᵫÆ0,ᡠRÇrᙠ-1,+8ÄfȲᦪÉe2-1.᝞Ê˲ᦪᐔvḄᜧͳÎᔠ³Ð&«rḄ³ᙠᓄ2—1,0ᜐḄᑗᙠxº16.᝞AABCÓ£!22Ḅ®ÓªPRC!ᙊÕ1!Ö×ḄᙊfØÙc,ᑣᡂ.ÚÛᨬ2·UCPAB=.

19ABrc]HᫀoJ+᪆ÜÝcL!Þ•Þ=(ß+à)•(á1+Ü^:ß-1+ã•(ä+ä)+/2=22X2V3x1+CP(AC+BC)+1=7+CP(AC+BC),Û4BḄ+M,åæCM,ᡠRÞ•Þ=1-2CM&,ᡠR-ᵫÀçᔣUB•èᨵᨬ2·1,éUêÀëᚖᡠRERQ=O.ÜÝRC!ᙶ᪗ïBCᡠᙠ!xºðñ☢ᙶ᪗᝞ᡠᑣ4c23),òc220),ᙊCḄÜó!*2+ô=1,7P(cosasin0),0<6<2ᐔᑣAP=(cos᜛+2,sin0—3),BP=(cos0+2,sin0),AP-BP=(cos9+2)(cos஺+22)+(sin0—3)sin0=7+32cos0—3sin0=7+6cos(e+5),ᡠR-6=&UöNᨵᨬ2·1,éUê=(cᙶ,3÷=(c2-3),ᡠRø•☠=0.17.7X,ydúᦪEç®ôf=ឤᡂñᑣúᦪ஺Ḅ·/4x+yxᓝ4yx+4y4x+y2Hᫀ5J+᪆ý/=9஺,ᑣ

201_4+r4+16/4-(4+r)(4+16r)15r115,116+68r+16/24-,16,-r4ir/CO16r+—+68115,115,12I-----[6c+ᓝö+þÿ2A/16/--+682=1ᡠ஺2__=_!_+x+4y4x+y1ᓝ4ᓝ1+4/4+/]44+r—4—16r=l+4r-4+r+1=(l+4r)(4+r)+1__15/_—=1=114+17/+4/24'4r+y+172=1ᡠஹ2஻=[76ᑖ]10+7᪗21.ᔠA={x|-1஺<4,xGN},B={jc|logx<3},ᑣACB()2A.(0,4)B.{1,2,3}C.{0,1,2,3}D.{2,3}"ᫀB$+᪆ᵫ⚪()A={0*,2,3},ᵫ1og2X<3,)0

21"ᫀA$+᪆7⚗/01Ḅ8⚗9:஺6-*;_2^=9;-2y=6,>2—6=2,$)k=4,ᡠf⚗Ḅ4ᦪ6?;-24=240.ᦑ⌱A.3.ABCD=/+0?+1ᙠF;ߟ],1=]GGᜐᑗDḄJ᳛68,ᑣLߟ1G;GA.7B.-4C.-7D.4"ᫀB$+᪆=4f+2ax,.*.-4-20=8,—6,:•x-1=1+“+1=—4.4.NBOᦪPx=2sin;5+°ḄQRᔣTUV2WᓫYZ[\)ᑮOᦪy=sin2x+9coslxḄQRᑣ᜛Ḅ(_`6;GA.0BaCaD.b"ᫀA$+᪆cOᦪ:sin2x+9cos2x=2sin;2x+gḄQRᔣdUVeᓫYZ[()y=2sin[2;x—fG+]=2sin2xḄQRᡠ஺Ḅ(_`60.5.ᙠhijᜅ2l᣾nᚮp᝞rḄ“tuv”xy.tz{xyḄ|}ᡈ}“”\ᩭ6xyḄᓫY1000xyᵨ{ᩭ=.Ꮇ2000xyᙠ=ṹᡂ=ᚮ᤮ᑣ᝞a᣸ṹ70ᯠ\==ṹ⌴=ᨬ☢=631ᑣ=ᚮxyᐳᨵ;GA.2X106B.2.02£dC.2.025X16D.2.05X106"ᫀB$+᪆ᵫ⚪¤(B(᪀ᡂ=W✌⚗670,§⚗631,⚗ᦪ640,¨©61Ḅ©ᦪᑡᑣ«6S=4°X;T+31G=202O,ᦑ=ᚮxyᐳᨵ2020X1000=2.02X1?G.6.=W²³´Ḅµ¶Q᝞Qᡠ·ᑣ¸²³´Ḅ´p6;G

22HB-2-I¹¶Qº¶Q»¶QA.2+ᐔB.1+ᐔC.2+2ᐔD.1+2ᐔ"ᫀA$+᪆᪷õ¶Q()¸²³´ᵫ=WZÄ´«ÅWᙊÇÈᔠÉᡂ,ᑣV=1X1X2+1x7tXl2X2=24-7t.7.ÏÐᦪa,b,d,eÓÔ3WaÖWdWeW12,ØÙ+gḄᨬ9`Û;G巫A2cB.V2D.2答案c4=3,e=12b=d=6ᡂß,fᦑḄᨬ9`61ᦑ⌱C-8.ABáOᦪQR᝞Qᡠ·ᑣQRᡠâãḄOᦪ(_Û;GxA.äåB.y=2w-2C.y=ew-H

23D.y=2w—JC2ᫀD+᪆âA,Oᦪy=%j,xì0yz0,xî0GîGïÓÔ⚪¤ðâB,x2Oy=/;xGᓫó⌴ôïÓÔ⚪¤ðâC,xõOGì0,ïÓÔ⚪¤.9.Ï÷CDCa᜛=Ä=1;øGù0GḄ=ᩩûüDýþᱥy=4/ᡠḄᑣCḄ᳛A.1B.1C.2D.4ᫀC22+᪆C5—5=130,%&0Ḅ'ᩩ)*%+bx+ay=o,f|ᱥ~%+ὶ-.bx+ay=O,'/01y,40^+4=o,26=4r.zl=/?2&0,;<=Ḅᙶ᪗ᑖA3.71,᝞72»ᡠEF+G=4ஹ'2=0,ᡠE.ᔊKᨵ'M0.'M'5.ᡠEᡠḄN1+4&OP=ᙶ,ᓄRST=ᙶ.U=2V/,02—஺262=12஻4,e4—-12=0,e?=4ᡈ'3[,ᡠECḄ᳛e=2.10.᝞\1,]^_`abA8CḄd6,0fgd8cḄK=.஺fABdi'=.jAD=2,kaAOCnḼpAOqr.ᙠqrt+K.TOCḄuᙠvw.4xyᑁ{ᓄ,᝞\2,ᑣ=CᡠbᡂḄ}~Ḅu\1\2

24A.5BC.itDὃᫀA+᪆ab:ABC_`ab.஺BCḄK=,.AO±OB,AOLOC,.../BOCf☢a5-40—CḄ☢a.aNBOC=H.2᝞\.t=஺஺E_L08,ᚖE,CE,ᑣ஺E஻A஺.OE=l,0C=3,DE=^AO=2V.ᑣ=+)+.ᐸKீOkு=0,ᓽ☢,0C)=ᐔ'.DC2=(DE+EO+dc)2=DE2+Eb2+OC1+2Eddc=(,2-43)2+]2+32+2X]X3Xcos(Eb,-I-0C)=22—6cosᑣ=22—6cos6e[19,22],ᓽcosOG0,5,ᓽ=CrtḄau%7C_7l=CḄ}~E஺ᙊ.E0CḄ'ᙊ.3=.ab:ABC_`ab.஺BCḄK=..AOLOB,A01.0C,/BOCf☢aB—4஺'CḄ☢a.NB0C=6.᝞\.t=஺OELO8,ᚖE,CE,ᑣDE//AO,OE=1,OC=3,OE=|AO=2cUᑣEC2=OC2+OEr-2OC-OE-cos9=10-6cosᙠRt/XDCEK.DC2=DE2+EC2=(2A/3)2+10-6cos6»=22-6cos0,rI-ᑣ0019,22],ᓽcosOG0,],ᓽ=CrtḄau=CḄ}~E஺ᙊ.EOCḄ'ᙊ.3X^=E211.]^i¡ᦪᓫ¤.[^ᓃ=஻+§3,Z?£R),ᑣa+b=,஻+/?iḄᐳ©ªᦪᙠ

25ª☢ᑁ«Ḅ=¤¬®▲.°ᫀ'22²+᪆~—1'஺ᑣa=—1,஻=—1,.•.஻+஻=-2,a+biḄᐳµªᦪᙠª☢ᑁ—1+1«Ḅ=-1,1,¤¬®▲.12.2018•·¸ᙠABCK.aA,B,Cᡠ«ḄdᑖAmb,c.T஻=¹.b=2,A=60°,ᑣsin8=,c=.°ᫀº3²+᪆᝞\.ᵫ_¼ᳮᔁ=ᡡ.ᵫÀ¼ᳮa2=b2+c2—2bc-cosA,7=4+/—4CXCOS600,ᓽc2—2c—3=0,²c=3ᡈc=—1[1.x+2yN0,13.]^Áᦪ-yÂF'ᵨ.Tz=x+yḄᨬᜧÆ6,ᑣᱏ,ÈÉOWyWÊ.=2x+yḄᨬVÆ.°ᫀ3-9.+2y20,²+᪆ËÌÍÎÏ'Ð40,ᡠ⊤ÒḄÓÔ᝞\K▢Ö×ᑖᒹÙdÚᡠÒ.ᵫ\SO^y^rn^.pz=x+yt=4V."2É.zÛᨬᜧÆ6,ᡠE"?=3.pZ]=2x+yt=3—6,3É,ziÛᨬVÆ,ᨬVÆ'9.14.ᵬஹÞßàá“Kàãäåæ”Ḅ⌱éêë.ᙠìßḄêëᩩíî.ᵬஹÞ5ïêëḄᡂðᓫ¤ñᑖ᝞î⊤ñ

261ï2ï3ï4ï5ïᵬ5855769288Þ6582878595TóᵬஹÞ5ïḄᡂðKᔜõÊöÛ1ï÷øᑖ᪆.ᑣöᑮḄ2MᡂðKú¬80ᑖḄMᦪXḄûü,%ý.°ᫀ.|²+᪆ᵫ⚪XḄᡠᨵ0,1,2,ᵬஹ5ḄᡂᔜI,24ᵬḄᡂ!"80ᑖḄᭆ᳛'1=)Ḅᡂ!"80ᑖḄᭆ᳛*2=)313ᑣP(X=0)=5X5=255213414'(X=l)=⊟+34P(X=2)=|x”XḄᑖ8ᑡX0123148P25252586314--:;E(X)=OX᳘+1X—+2X525@ABCF஺F"ᖐXC2A*KXCf_2FW15.PQᦪSxF=|f—4x+9-a|+lᙠXY03Z[Ḅᨬᜧ^8,ᑣ_ᦪ஻Ḅ.aᫀ2ᡈ12d+᪆f/=•?—4x+9,jk0,3F,ᑣ5W/W9,y=\t-a\+\,la<5ny—t—a+X,ᨬᜧ9—a+l=8,oa=2pl5Wa<7n«xFḄᨬᜧ9s஻+1=8,o஺=2CtuFpl79nxFḄᨬᜧa—5+1=8,o“=12.z[_ᦪaḄ2ᡈ12.16.P|4ᙠ}஺ᙊஹ2rCr>0FḄᙊ[|8ᙠ}஺ᙊஹ•Ḅᙊ[,jḄfWR+|s|+஺|W0,ᑣ/A08Ḅᜧ

27ᫀdd+᪆@4sOA=a,OB=b,Q,Ḅᜳ|a|=2r,|i|=r,ᑣḄf£R,|஺+<|0+ᔣឤᡂ@oOr-\-2ab+tr^Or+2tab+tlb1,᦮ᳮo/2+4/COS9-C4cos஺+1F20,A=16COS20+44COS6>+1=42COS0+12<0,ᡠ}COS0=!஺£[0,ᐔ],ᡠ}஺=¤.@4¥0A=஻OB=b,\a\=2r,\b\=r,ᑣCR,|a+b|W|a+rf>|ឤᡂ.la,5ᐳ©nªᯠᔠ⚪ᑣa,஻ᐳ©ᑖ®¯°±=a+b,OD=a+tb,|஺ᙠ²©AC[᝞´ᡠµ.¶·|a+"W|a+ᔣឤᡂᑣNACO=W¹ভ=2/|»=T,ᡠ}NAOC=½N4O8=¾.17.P'2^¿ᙊÀÁ©ḄÃᐳᯖ|'2ᙠÅÆ[P^ÇÈḄsÉÃᐳ|,/QPF2=Ëᑣ¿ᙊÀÁ©ḄÌ᳛ÍÎḄÐ^.aᫀC1,+8Fd+᪆@4sÑ¿ᙊ@Ò5+/=1C0>»>0F,«1ÓÌ᳛ÔᯖÕC,Ö×,2=ØsÙx2y2Á©@ÒÛsÜ=1C஻2>0ᔊ>0F,Ì᳛02,ᯖÕC,Ö×஺2=£+M

28ßÑa,'2ᑖ®àஹáᯖ|?^ÇÈᙠâsã▲ḄsÉÃᐳ|,ᑣᵫ¿ᙊæÁ©ḄçèoIPF1I+IP'2|=ᓅ1Um-\PF\=2a,22\PFi\=+a,ai2do\PF^—a\—a,2ᙠêF1PF2ᵫëìçᳮo3Z+íF2+îZs-4c22ai+aa|—«22,222᦮ᳮ4c2=3+=,ᓽ3+=4,ᓽ3C£H£F2=4,ᑣ°=4_3C£F2ᑣ-ñ2=ò4-ᨽ14ô•••O£M£KA3Ḅõߟ3*+4——3C+F,•,÷C9=-3C/-1ø+ùC0úFᓽe/2ḄÐC1,+°°F.22@4¥Ñ¿ᙊ@ÒÜ+ý=1C*»>0F,Ì᳛ÔᯖÕC,Ö×஺2=þsÙfV*2=142>0$^>0,&'᳛C2,*ᯖ,C,-.°2=/+M,234&ᑖ78ஹ:ᯖ;$P=>?ᙠAB▲ḄEFᐳ;$|PF||=m,|JJ2J஻,ᑣ/H>/?>0,ᙠOJJJ2P$ᵫRSTᳮUm+7?2+mn=4c2,/஻+஻=2஺,ᑣᵫXᙊZḄT$[஻=2஻2$2222JJ__ᔩ2^~஻m`ᓾ1=b=^^=,/+”2+஻7஻

292+T஻72++inn—2஻2+^2=1"22++mnḽXf$=2+g3,ᑣ/=1r-3r+3•kᦪgn=1—T—ᙠ஺$+8)qᓫs⌴u,vᔆ3e\e£(v0,1)7,2ᓽz02Ḅ{|~(1$+°°).[76ᑖ]10+7᪗31.U={y|y=k>g2X$x>l},P=}=%x>2,ᑣCuP()A.+8)B(0,C.(0,+8)D.(-8,O)u&+8)ᫀA+᪆ᵫᔠUPḄkᦪy=log2X,x>l,)>0,ᡠᐰU=(0,+°°),J=(0,g),ᡠCuP=g$+8).2.%>0"=“kᦪ/)=b+"ᙠ(0,+8)q=ukᦪ”Ḅ()A.⌕2ᐙᑖᩩ¢B.ᐙᑖ2⌕ᩩ¢C.ᐙ⌕ᩩ¢D.£2ᐙᑖ¤2⌕ᩩ¢ᫀB+᪆¥a>0¦$/(§)=3f+஻>0ᙠ(0,+8)qឤᡂ«$ᓽ¬)ᙠ(0,+8)q=ukᦪ$ᐙᑖឋᡂ«;¥ᐔv)ᙠ(0,+8)q=ukᦪ¦$/(x)=3f+a20ᙠ(0,+8)qឤᡂ«$ᓽ

30⌕ឋ2ᡂ«$ᦑ”“>0”=“kᦪ²x)=d+axᙠ(0,+8)q=ukᦪ”Ḅᐙᑖ2⌕ᩩ¢.sin3OWxWl,3.kᦪ³)={´µb,஺¶2·$¸y(a)=ys)=y(c),¹u஺ᓝllog2010X$x>\,+cḄ{|~=()A.(1,2010)B.(1,2011)C.(2,2011)D.[2,2Oil]ᫀC+᪆»஻$b,஺¶2·$a

31ᑣz=|x+y+2|=^X"Ú2&ᖾ&_/,ÜF-/=3$5,ᦑz—\x~\~y~\~2|W6,ᡠz=|x+y+2|Ḅᨬᜧ|=6.5.0(X)ᨵᨬµ|(ðᫀA+᪆E(X)=sin2x,D(X)=(0—sin2^)2-cos2x+(1—sin2x)2-sin2x=sin2xcos2x,/.D(X)=E(X)[\EQOln-E2(ಘ+E(x),E(X)G(O,1,ᦑ஺(X)áE(X)ḄuᜧÜuᜧ$O(X)ᨵᨬᜧ|;.ᦑ⌱A.6.ᵬஹ÷øùúûᙠüÖýþÿḄ⌱⌱ᵫ⌱Ḅᙳᡠ⌱ᐸḄ.ᵬஹ$ᐳ⌱Ḅ&ាᨵ)*+ᨵ)&,-./ᨵ⌱ᑣᵬஹ$1234ᩩ6Ḅ⌱78Ḅ9ᦪ;()A.60B.48C.36D.24IᫀBK+᪆ᵬஹ$ᐳ⌱Nᐳ⌱Ḅ&9ᦪᨵAO,ᑣᙠᒕSḄ,⌱ᵨ(஺b)⊤WᒕS,⌱ᵬ⌱஻$⌱6ḄYZᐳᨵ(2,0),(1,1),(0,2)\9YZ.ᑣᵬஹ$12ᩩ6Ḅ⌱78Ḅ9ᦪ;Ai(C?+AHC5)=12X(1+2+1)=48.37t7.ᙊ┵Ḅg☢ijklm;2,ᙊno;pḄᡧrᑣᵫsḄ,ᩩtuᡠvwḄᨬᜧz☢{|☢ᡠᡂ~☢oḄS;()A.B.1C.*D.IᫀAK+᪆ᙊ┵|☢ᙊḄlm;r,

3237r3ᵫ2“=g><2,z☢⚔oᜧ;20,Isin0=3ᡠ2,ᩩtuᡠvwḄz☢ᨬᜧ,ᩩtuḄᜳo;a,ᑣaW20,ᨬᜧz☢ᡠḄ\orḄ☢1jrS=]X2X2sina,Ia=1,ᡠ,ᩩtuᡠvwḄᨬᜧz☢;Ὺo\orᐸ3Ḅ;¡|☢ᙊḄᙊnᑮᨬᜧz☢Ḅ£¤;qg¦2—¦2=/ᑣ,ᩩtuᡠvwḄᨬᜧz☢{|☢ᡠᡂ~☢o2J2ḄS;ª=«.8.+1¦1—O¦6Ḅi8Ḅ¬ᦪ⚗k¦A.-5B.7C.-11D.13ᫀC+᪆Ḅi8Ḅ¯⚗°8k±)²,ᐸ³Ḅ⚗k)5,¬ᦪ⚗;c-£¦°=1,ᦑ3+1¦஺)²Ḅi8Ḅ¬ᦪ⚗k2XX[CT]+1X1=-12+1=-11.9.¹º7rA8C஺»ouACᢚ½¾A,B,C,஺¿;⚔¿Ḅ\À┵ḄÁᨬᜧu8஺N☢A8CᡠᡂoḄᜧ;¦A.90°B.60°C.45°D.30°ᫀC+᪆᝞j¾ÃO_L☢ABC\À┵O-ABCḄÁᨬᜧ.~ZDBO;uBON☢ABCᡠᡂḄoᙠRtADOBOD=OB,u8஺N☢ABCᡠᡂoḄᜧ;45°.

33310.ÈÉ“GR,,Ëᦪy=h—a|-1{y=Ï—a+1ḄjÐᨵ*Ñᨵ\ÒÓ¿*Ó¿ḄÔᙶ᪗᪀ᡂØᦪᑡᑣÚᦪ஺Ḅ;()9^5+3^335-3^33A.5)Ü86885+3-J33C.-5D.-8IᫀAK+᪆ᵫ⚪᪀⌼ßËᦪàx)=|x-a|-O+“-2,ᑣâËᦪᨵ*Ñᨵ\ÒḄã¿.3J(x)=\x-a\—-+a—23ᵫx—2=0,Kx=—1ᡈx=3.3(1)¾஺å3X=—1Nx=3ᙳk7U)Ḅã¿ç)è)(+24—2=0éêᨵ,ÒKᦑëì)éêᨵ,Òã¿ᔠ⚪Ï(2)¾஻è=-1Nx=3.k/U)Ḅã¿ᵫ⚪É/U)ᨵ\Òã¿ᦑî\Òã¿3k7&)x—O+2஻-2=0Ḅ)ÒK*ï-1N3..ᵫ⚪\Òã¿ᡂØᦪᑡᦑ39î\Òã¿ð;)5,ᓽ)5k7&)è)O+24—2=0ᨵ)ÒKòᐭ஺=)(ôôõ9஻=ö12⚪Ï(3)¾)lv஻W3x=3k«x)Ḅã¿x=—\kú)Ḅã¿û᜜,Òã¿ᑖþ;X],%2»%2ḄMx—1+2஻2=0,ᓽf+2(l—஻)x+3=0Ḅᑗ,3ᡂ!"ᦪᑡᡠ&'ᦪ=3X|+3=2%2+,=-./0+&=2(a-1),ᡠ&஻=ṓᓉ./laW3,ᡠ&1=5”'ᔠ⚪<=>.OLᓃᓃ3A/CC9K5+32/33GHᡠI஺ḄK05ᡈ---g-.

34711.NᱥPy2=2px(p>0)HḄQP(3,R)ᑮᯖQFḄUV0/ᑣ᜛=,YPOF(஺0ᙶ᪗\Q)Ḅ☢^0._ᫀ1ᙶ+᪆ᵫNᱥPḄcdef3+g=h+p=l,ᡠ&j?=2r,/P(3,%)ᙠNᱥPHᡠ&j)1=kᡠ&S^POF=2'I஺&1%1=l_____2-v+1e12.mfnᦪ7U)=ln(Wq?—2%)——opᑣ10)=12018)+/-2018)=3答案--3233O----+᪆,/(O)=ln(VT-O)22qg(x)=ln(N1+41—2x),h(x)=r+ᑣyu)=ga)+sa),g=ln(VTW-2x)=lnWg(x)+g(-x)=O,r,2e*+l2(ex+l)-l,1/஻(x)=—e*+1=~-7+1-=—2+ev+r1iixe஻(%)+/7(s=-2+ᓺ-2+^1=—4+u+==-3,.fi.2018)+/(-2018)=g(2018)+/z(2018)+g(-2018)+/z(-2018)=-3.13.᝞wxyzH{|}Ḅ~01,P,ḄḄwᑣḄ^0☢^0.

35Ḅ^V=8X3+|X8X3=32./A8=┐=24ᡠ&Ḅ☢^S=Jx(3+6)X2^X2+3X4=18^+12.14.mfnᦪ,")=sin(tar+9)(0<3V7r)Ḅᨬ{|ᕜ0ᐔᑣ¡=,¢nᦪ£¤Ḅw¥ᔣ§¨©2ᓫ«¬w¥ᐵ¯Px=*±²ᑣnᦪ³)Ḅ⊤µ£0_ᫀ27W=sin(2x+¶)+᪆·ᵫnᦪyu)Ḅᨬ{|ᕜ0ᐔef஺=2,¢ºx)=sin(2x+0)Ḅw¥ᔣ§¨©Qᓫ«¬+ᑮg(x)=sin(2x+l+᜛)Ḅw¥,/g(x)=sin(2x+1+,Ḅw¥ᐵ¯Px=»±²ᡠ&2d(9)+1+9=¼+½&ez),ᡠ&°=E+h(AGZ),Ä00<9<ᐔᡠ&᜛=f

36ᡠ&Åx)=sin(2x+ᵨ.·oᵫnᦪ/(x)Ḅᨬ{|ᕜ0ᐔef஺=2,¢ᓻÈsin(2x+0)Ḅw¥ᔣ§¨©Éᓫ«¬+ᑮg(x)=sin3+W+Ḅw¥,/g(x)=sin(2x+1+0)Ḅw¥ᐵ¯Px=—/±²,ᓽsin9=sin(9Ê),Ä00᜛ீᐔᡠ&9=Ì15.᝞wᙠÍ}A8CQÐ~AB={±ÒPAC=4,~0cH(ᒹÕ஺CQ)ÖPfCBḄ×PH(ᒹÕBQ)ÖQQØÙDP=BQ,ᑣ•ᔊḄᨬ{K_ᫀ2+᪆ÜÝBO,ÞACQ஺Ä0~AB={±ÒP4c=4,ᡠdBD=2.·&஺0ᙶ᪗\Qᓻ0xßḄ|ᔣà0yßḄ|ᔣáâ¨☢¯Òᙶ᪗ãxOy.ᵫ⚪äefA(—2,0),8(0,-1),C(2,0),0(0,1).äP(2”-f),Q(~2f,-1-t),OWtWl.çè=(2—2/,r-l)-(-4r,-2)=8*+6r+2=8(+é+hᵫoênᦪḄᓫëឋefíOWfWluy=8î+6f+2ᓫë⌴ðᡠ&íf=0uPAPQñ+ᨬ{Kᨬ{K02.·oäᔣòó=ô=4,AD=BC=b,

37({)2+({f3ᑣcos(a,b)=,2X{d{5,306=|aHb|cosீa,b)==3.q5>=஻(OVW1),ᑣç=-(Ab+s>)=(஺+ö),P0=PC+CQ=(1-z)a-(l+A)6,ᡠ&ç•ç=(b+ö)÷஺-1)஺+(1+kk=3(z-l)+5(l+2)+5z(2-l)+3z(l+2)=8*+62+2=80+é+(ᵫoênᦪḄᓫëឋefí0W2W1uy=8z2+6A+2ᓫë⌴ðᡠ&í2=0uPAPQñ+ᨬ{Kᨬ{K02.16.mfᦪᑡøùúØÙ஺஻+2=3ù+1-2“"(஻CN"),û=1,យ=4,ᐸþ"⚗SvḄ᦮ᦪ஻S“+2஻+%2"20ឤᡂᑣᦪḄ.ᫀ[~1.+°0)+᪆ᵫa”+2=3a“+]—2+2+2஺"-3஻“+|=0,$+2-%+1—2(a"+]-Cli))r%஺2—஺1=3,&ᦪᑡ(3✌⚗2+,Ḅ-,ᦪᑡ.,.a.+|-a“=3X2"T("eN*),/♦0஻122a—a”-i=3X2"…Ḅ4“2=3X2,54ct\=3,n6(7ᔜ9:;%4S=3X2"-2H----F3X2+3Xl=3(2n/.=3>2”7-2(0w=l2?@A).j—2”.•.S„=3(l+2+22H------F2"T)—2"=3X-j77y-2"=3><2"-2஻-3.ᵫS+2n+m-2"^03C2"—2”—3+2஻+a2”20,n3X2"-3+n2",0,ᓽ43+⊤133--2--2727ᦑᦪ஻Ḅ[4|,+8)

38.2I217.KL”>0,b>0,ᑣMN^+P7ḄᨬR_______.a-rbab-v1ᫀ2+᪆0a+b^ab+12/+2஻2ு/+2Ja2+l2+Za+bab-\-1a+ba+ba+b(஻2+1)+(U+1)ஹ2஻+2஺=a+b^~^+b~=2t0WX0a=b=\2-Yᡂ/ii/?2+2τ஻2/?2+2,a21,0a+b[+(a+tr)+22ab+2ߟM+l*"+1=2'0WX0஺=]=12-Yᡂ.7-1-22^7a+b+ab+\ḄᨬR2.[76ᑖ]10+7᪗41._LᐰaU={123,4},4={1,3},8={3},ᑣ([஻)C(0ᑗ-c()A.{1,2}B.{1,4}C.{2,3}D.{2,4}ᫀD+᪆᪷e⚪={2,4},{1,2,4},ᦑ([uA)n([/)={2,4}.2._Lm,ngᩩijḄkla1BgmijḄn☢ᑣpᑡq⚪rsḄmᦪ()জ,"஻aWu_1_᜛ᑣa_L᜛/ঝ;_1_£Wal_᜛ᑣ஻a/ঞ”஻஻஻?J_a,஻_1_᜛ᑣa஻᜛/ট“஻"n//a,ᑣ”஻a.A.1B.2C.3D.4ᫀB+᪆|஻a,ᑣᵫl☢n}ḄឋᳮLᙠaᑁᨵkl/᪷n}%;᜛ᑣI,[a_L0,ᦑজs/Wa_L",ᑣ%Uaᡈm஻a,ᦑঝis/஻஻“ml.a,ᑣ஻_La,%n,ᡠ(a஻᜛ᦑঞs/;஻“n//a,ᑣ஻aᡈ/«Ua,ᦑটis.ᦑsḄmᦪ2.3._Lᔜ⚗ᙳᦪḄ-,ᦪᑡ{}Ḅ+,,஻⚗S,,,ᑣ‘2>1”“S2+2S6>3S4”

39Ḅ()A.ᐙᑖi⌕ᩩB.⌕iᐙᑖᩩC.ᐙ⌕ᩩD.iᐙᑖ?i⌕ᩩᫀA+᪆4-,ᦪᑡḄᔜ⚗ᙳᦪᡠ(ai>0.q>l,ᑣS2+2S6—3S4]I24|(1—q6)3al(1—q***4)—qi-q—qaq2(l+2q4—3/)""«?-1)(*1)”q-1q—1ᡠ(S2+2S6>3S4.[0S2+2S6>3S4ᡂ2q(1,ᡠ(“1"<<5+25>3S4MḄᐙᑖi⌕ᩩ26ᦑ⌱A.&-,ᦪᑡ6Ḅᔜ⚗ᙳᦪᡠ(q>0,$2>஺.S+25-3S=^S(2^-1)>0,2642q,ᡠ("q>l”“S2+2S6>3SJḄᐙᑖi⌕ᩩᦑ⌱A.4.2018µ3ᨴ7¸¹º»¼1½¾“¿ᱥ(ÁᡃÃᓄ”ḄᦻÆ⊤ÇÈᐵcÊMRËḄᨬÌẆÎÏÐᙠÑÒÓᨵÔÕÖ×ØḄÙÚp?Û⊤ÜÝÞᓄḄßà——áâ7ã⁐Ḅᦿᙽ(çèéê.ëìíÊMRËḄîï⊤ðᨵ2ij⊤ðḄRË(ã⁐ᦿᙽèéêÊMRËᔜ4)ḄñòróôõÝ4öi÷øᙢõÝ2öᑣõÝḄÊMRËij4⊤ðḄᭆ᳛()1123A'BjC.jDᫀc+᪆ᑖÿ⁐ᦿᙽḄ4,a,8,b,2ᙢ2!ᡠ#$%&'(ᦪ4*3=12,Ḅ./⊤1Ḅ&'(A,a),(a,A),(B,b),(b,B),ᐳ45!ᡠ6Ḅ./⊤1Ḅᭆ᳛,±2=112~3-5.<=ভ=1,?|=g!Ba_L(a-%),ᑣᔣK஺ᙠ஺NᔣOḄᢗQ()A.1B.&C.UD*

40VᫀDY+᪆஺\]Ḅᜳ_*.*al.Oa—bT,•9•a-Oa-bT=a2—a-b=0,ᓽOT—|a|-|A|cos0=0,.A—f••cosO7—2,!ᔣK஺ᙠ]NᔣOḄᢗQ/cos0=2-6.ijklḄmno᝞oᡠq!ᑣrjklḄlstu8-B163C203a83VᫀBY+᪆ᵫmnow=!rjkl.x☢s8,z2Ḅ{|┵!᝞oᡠq.24A.2B.1C.QD.2VᫀATTJTY+᪆N~!cox+Op=^aT+Op=k\Ti,k\GZ,7E7Tjr37rx=W!জ+3=஺+8=2᝕2ᐔ+ᡈ2ᦇ2ᐔ+7!k£Z,ᐔᐔ5ᐔ!4জ=t—242uᐔdᡈtk242uᐔW!h1k2GZ,2.1tuᓽজ=4t-22uᡈ4tᦇi—2ᦇ2u!ki,kz^Z,102m>0,ᡠ6জḄᨬ4—

41N~=+9=ᐔ!+᜛=¢!£4'Y8.<=a>0,b>0,(2a+b)2~6ab=\,ᑣ¤Ḅᨬᜧ.()A.1B.yC.gD.U(ᫀD*+᪆a>0,¦>0,(2஻+6-6¨=1,ᡠ6(2஺+6)2=1+3labW1+3-,2.+6W2,஺>0,/?>0,ᡠd(2a+b)2=l+6ab>l,ᡠ6\<2a+h^2./=2஺+©£(1,2],ᑣnop=[r᧕=«=¬)ᙠ(1,2]O.®¯ᦪ!ᡠ6f=2!°U)²ᑮᨬᜧ2,ᦑµḄᨬᜧᱏ!ᦑ⌱D.…A+B9.ᙠ¸ABC!tan-y-=sinC,¹AB=2,ᑣAABCḄᕜ»Ḅ²½.()A.(2,2^2]B.(2ᔾ'4]C.(4,2+2ḄD.(2+2-'6](ᫀC*+᪆ᵫ⚪¿wCA+BfitC\C0S2CCtan-2-=tanl2"—2)=7T=2sinycosy.sin,rC,C1—COSC1cos,W0,ÀMUsin72y=2»ᓽ---5-----=2n•*.cosC=0,C=2.ÁÂw¸ABC.6ÃC_⚔ÃḄ_m_Å!ᑣ4=a2+b2=(஻+»2—2a/?Æ(஻+Æ)2—2X("(")2=("W!•(஻+0W8,ÁÂᨵ“+6W2ᔾ'

42Z.AABCḄᕜ»“+b+cW2+2ᖾ.m_ÅÉÊËÌ£ᜧÍÎmË!ᑣa+b>2,/.a+/?+c>4.ÏOw!AABCᕜ»Ḅ²½.4,2+2ᔾ.10.᝞o1,ᙠÑ☢ÒËÅABCDE!{ËÅABCD.ÓNÅ!/\ADE.Óm_Å.Ô¸AOEᡠᙠÑ☢ÕÖADᢚØ!ÙÃEÚᑮÃSḄÛÜt᝞o2.¹☢_S-AD-CḄÑ☢IT7T_T!ᑣÝ☢ÖAC\SOᡠᡂ_ḄßàḄ²½.tuAᡈᖾ]L16,4Jâ+ᖾ|.য16.D[O,ᑴVᫀDY+᪆N~᝞o!åÃSæ50,4£ç4஺ÍÃ0,åÃ஺æ஺6஻஺஺ç8:ÍÃ6,ᐔᐔᑣNSOG.☢_S-4O—CḄÑ☢_!ᡠ6/5஺6=஺èéw.åÃ஺æ஺N஻S஺çSAÍÃN,æOM஻ACçCOÍÃM,ᑣM,NᑖëCD,SAḄÃ!ìMN,ᑣZM0Nᡈᐸ⊡_Ý☢ÖAC\SOᡠᡂḄ_.4B=2,ᑣON=1,OM=y2.ïAC\OGḄçÃQ,5஺ḄÃP,ìPQ,ìMQðñ»çABÍÃW,²WQḄÃ/?,ìNP,NR,ᑣ{ËÅNPQRÑô{ËÅ!ᡠdNR=PQ,ᙠ¸OPQ!PQi=OP1+OQ2-2OPOQcos3=3+1-2Xõ*1Xcos0,WM_LOQ,WMVSO,OQCSO=O,OQ,SOUÑ☢POQ,ᡠ6WM_LÑ☢POQ,PQUÑ☢P஺஺!ᡠ6WM_LPQ,ᡠ6WMLNR,

43ᙠRtZXMNR!MW2=/?M2+7V/?2=1+1+1-2X^X1XcosO^A—^cos0,222¦,ஹ,!ÿOM+ON-MNᡠ|cos/MCW|=2OM-ON2+1-4+cos஺|-l+"\Z§cos0|=2^2=2஺e[,3,cos0e[3"⁠],ᡠ%ᔊe[0,gJ,ᦑ⌱D.-./᝞1"2A£)Ḅ78O,8cḄ78G,<=OG,ᑣOGUZ),OGᡠᙠABxD"0஺ᡠᙠAByD"F8஺GᚖAIJ☢A8CZ)ḄABzD"MNOPAQᙶ᪗T.UAB=2,ᑣ4(0,-1,0),C(2,l,0),0(0,1,0).XS4OZ[Q\"஺A஺Ḅ78"<=S஺,ᡠSO_LA஺"_OGJ_AO,ᡠ/SOG`/☢QS-AZ)-CḄJ☢Q"ᓽNSOG=6»,S(V3cos0,0,sin஺),AC—(2,2,0),DS—(yficos0,—1,sin9),2y[3cos9~2cosீAC,DS)~2^2X2,_Jwlm,ᡠcosOeI"ᙶm,ᡠcos(AC,DS)wUᙶ],ᡠo☢ABACpSOᡠᡂQḄrstḄ2tv`0,11.wx(i`yᦪᓫ|"aCR)`}yᦪ"ᑣ஺="|(2a+l)+3i|=.ᫀ;2—i(2-i)(஻-i)2a-l-(2+஻)i+᪆i+a(a+i)(஻-i)c^+1

44_ᨵ}yᦪ"1ᓝaᡠ2஻-1=0G2+aWO,a=T"ᑣ(2a+l)+3i=2+3i,ᡠ|(2a+l)+3i|=|2+3i|=.12.4ḄᑖᑡQ0121P6ᑣE(J=,D(2^-l)=.ᫀU91114+᪆ᵫE©=OX%+1X]+2X]=w"4xx1z$D©=((-—2X_+fl一272X376k^.•.O(2)=4O©=13.UABx-2y+l=0ḄQa,AB1+1=0ḄQ£"¡a+6=?Gb¤ᙊC¦•?+/—4x—2y—p=0ᡠḄs¨6,ᑣ,p=.ᫀ34+᪆ABA¦x—2y+l=0ḄQa,ᡠ/iḄ᳛ᵫ=tana=1,AB"2¦x—«+1=0ḄQ᜛"ᐔ11tantana1—517t=1=W"1+tancctan1+]X1ᡠ=3,ᑣ"2¦x—3y+l=0,_ᙊCḄ᪗¯-°(X—2±+6—l)2=p+5,ᵫ²AB6¦x-3y+l=0Fᙊ³(2,1),ᑣᡠ¤s¨2´+5=6,ᦑp=4.

45xW3,14.wµᦪx,y¡<·+)"22,ᑣ2x-yḄᨬt¹wº»¼½¾¿/ᨵJ0,"ᑣµᦪ஺Ḅ2tv`ᫀ1(—8,τxW3,+᪆À⚪Â"ᵫµᦪx,)"¡kᓝy22,ÄÅÆÇ᝞17▢ÉÊᑖ(ËÌÍ)ᡠÎ,jWx,ᐸ74(1,1),8(3,-1),C(3,3),ᵫz=2x—yy=2x—z,ÐÅAB)"=2xÑJÒ"ÓABF8A(l,l)Ô"ZndnUZXl-1=1.Õº»¼/¾22,ᑖÖ×ᦪØax/ᨵ"ᓽᱏ[┐_Û_Üᔠ1\ÞßàáÂâã[4"i],ᑣäJ9-{•1].ᦑaW%15.2018åæçèé“ë¯ᢄí”Ḅïµðñ"Õᵬஹôஹõ[ö╋øÆù8úẆ"ᵬ╋ᨬüý3öþ"ô╋ᨬüý2öþ"õ╋ÿ1.Ẇᵫ3ᵱ2᝕ᡂᵫ᝕ᓫẆ╋1ᑣḄᑖ$%&ᨵ(.)ᫀ18++᪆ᑖ᪆/ᨵ2(ᑖ$⌶12(1)ᵬ╋2᝕ᑣ5ᨵ1ᵱᨵC6(ᑖ$%&72ᵱᑖ8ᑖ$ᙠ:╋;<╋ᑖ$%&ᨵA6(=ᑖ$%&Ḅ>ᦪ@C1XA5=6;(2)ᵬ╋1᝕:╋1᝕ᐳAB(ᑖ$%&3ᵱCD╋1ᐳᨵA6(EA6XA2=12,ᡠGᐳᨵ12(ᑖ$%&.E12+6=18,ᡠGᐳᨵ18(ᑖ$%&.H")+KL'DWO,16.M/Nᦪ4v)O᜻NᦪQᙠRROSNᦪTUᦪm஺WXᑣ1)^0,(«-1)2+(/7-1)2<1ᡠ⊤ZḄ[\Ḅ☢^O

46(ᫀf+1,஺)+KL1)WO,*+᪆ᵫde஺L5-1)h0),••7U)O᜻NᦪQᙠRROSNᦪ\a-\~b—120,pqr⊤ZḄs☢t([ᶍ)•••(«-1)2+(/7-1)2^1ᡠ⊤ZḄ[\@Gy(1,1)@ᙊ{1@|1Ḅ|ᙊ;L}~\,.•.ᐸ⊤ZḄ[\Ḅ☢^OW+1.17.M/஺@ᙶ᪗y᜛L%=l(a0,0)Ry4,BWX஺4_1_08,Q஺ᑮABḄ@c,ᑣḄ{᳛@(ᫀ++᪆%&Lᯠ04,OBḄ᳛ᙳᙠQ@0,OAḄ%@ு=eᑣ஺8Ḅ%@=L%,y=kxf£%ὶ¥,¦122¦§¨©/r£iᡠG|O4«=6+%¬L1+Fi+rᳮ|OB«=-j-i—pi)rL.'5,7rL~T7arIcharb-᝞[OHLA8¶AByH,ᵫ|஺4|-|08|=|48|·஺”|,\OA\-\OB\¦|O஻I=yl\OA\2+\OB\2'

47ᓽ|0஻|2=|஺4«+|0815ᯠ1»ᓝ7F7Lᡝ1+᮱+1+À.ill••7=7—ÁEÂᔩ/ᓝ/Ä»¦ÅRÆ._ᔆ7P[+É..e-Ê+7--2%&¨|஺4|=஻>0,|஺Ë=஻>0,0AḄÍ~@aÎ0

48++᪆@PUQ={1,3,4,5},ᡠG]u(PUQ)={2,6},ᦑ⌱A.2.(2018éᐶßë᫑àá)ã/åᔠ4={x|0l,ᵫxtaiAcl,!xtan"ீ$%<1,ᐙᑖឋᡂ)*xtanx☢ᑁ=ᦪzBC⊤EḄFᐵ/HIJKᑣ=ᦪzL/.1.1.11.A-2+2,nB-2-2'C.-2-^2*D-2-2'ᫀA

49wxiil+i|+1i,TUV=ᦪzBC⊤EḄFᐵ/HIJKᡠXY+᪆1P_ii+i=ᦪḄHZ[\]Z^V[_ᦪᡠXz=3+*,ᦑ⌱A.7.efgᔠi={஺y|y=x+l,OWxWl},gᔠ8={x,|y=2x,0WxW10},ᑣgᔠAC8L/A.{1,2}B.{v0«}C.{1,2}D.஺ᫀC+᪆ᵫ⚪z{!gᔠ4⊤EOWxWl}~y=x+l%ḄFgᔠB⊤EOWxWlO}~y=2x%ḄFᑣAA8⊤EYᩩ}~ḄFᙶ᪗+{!AAB={1,2}.ᦑ⌱C.8.2018•78ḕ᪥ὶὃa,6Yᩩ}a,᜛Y>☢ᑣḄ,ᐙᑖᩩA.a±a,b//fi,a±/?B.a_La,a//PC.aUa,blfi,a஻4D.aC.a,b//p,aVpᫀC+᪆J/A,}஻}஻{>ஹ[ᡈ☢A┯*J/B,}a}Z?>B┯*J/C,ᵫ஺_L4a஻᜛!Z?_La,TUVaUa,ᡠXb_La,C*J/D,}஺}6{>ஹ[ᡈ☢D┯.1%ᡠ3ᦑ⌱C.9.{2018}U4{2018,2019,2020}ḄgᔠAḄᦪVA.1B.2C.3D.4ᫀC+᪆ᵫ⚪z!A={2018,2019}ᡈ4={2018,2020}ᡈ4={2018}.ᦑ⌱C.10.efO={x,y||x|+|y|Wl},ᑡ¢£⚪:Pi¦§ᙠx,x+yுO*P2¦©zxyT^D,x—y+lWO*y|P3¦©zx,ye஺2|^2;x+P4¦§ᙠx,yG£>,±+y?22.ᐸ³´£⚪A.Pl1P2B.Pi1P3C.03P4D.P2,P4ᫀB+᪆Lµ¶|x|+b|WlḄ{·᝞¹▢»Zᑖ¼½¾ᡠE:

504,,-4#ᦇÂ234.J/0,4(1,0),1+0=120,ᦑpi¦§ᙠ(x,y)eD,x+y>0V´£⚪;J/X41,0),1-0+1=2>0,ᦑ©z(x,y)W£>,x—y+lW0VᎷ£⚪*J/cUy⊤EḄzÇVF(x,y)F(,2,0)È}ḄÉ᳛ᵫ¹{!ᓭḄÌÍÏVÐ,Ñ1P,ᦑ©z(x,y)GO,|||wgV´£⚪*J/P4f+y2⊤EḄzÇVF(x,y)ᑮÖFḄ×ØḄ>Ùᵫ¹{!x2+y2^l,ᦑ§ᙠ(x,y)G஺U/ᓝ)?22VᎷ£⚪.ᦑ⌱B.11.(2018.ÛÜÝÞ)iVHᦪᓫàᑣ=ᦪ³ḄHZV,ÝV.ᫀ,2V13+᪆=ᦪW=z{ᑣᐸHZV,2,ÝVâ3?+(—2ã=.12.(2018•78ᦟåæ⁐èéὶê〉ìឋὃí)efiVHᦪᓫàîÐfaCR)VðHᦪᑣ஺=,=ᦪz=a+yf2iḄÝL/.ᫀ1c+᪆,ᵫ⚪zfa—1=0,ña+IWO,a=l,=ᦪz=a+ᖾi=l+V2i,ôõ|}?ᔊ=c.13.(2018•78ḕö÷⊞ᓝô᪥ὶὃ)ef}[I,>☢a,᜛ñ.a,/U£,ᑡ£⚪¦জa஻0,ᑣù_L/*ঝîa_L᜛ᑣû஻/*ঞîmᑣa஻6*টîû஻/,ᑣᐸ³£⚪Ḅÿᨵ.ᫀজট+᪆জᵫm-La,a//pm_1_᜛U/Uᡈᡠ஻?_!_/,জঝᵫmLa,a_L4᪷஻ᡈ஻zU4,"#ᑨ%&'/(᪷Ḅ*+ᐵ-ঝ┯/ঞᵫm_L/,/U0

51"#ᑮ3_L£,45"#ᑮ஺஻ঞ┯/টᵫ3_La,m஻//_La,/U}ᡠa_L£,ট.9:ᡠ;<⚪Ḅ>জট.14.?@a,bZ,iABᦪᓫ*.EFᦪGḄHI(BIJKᑣ᦮ᦪ«ḄᨬPQ1ᨬᜧQ.SᫀU35._2+ᔊ(2a+Z?)+(஻6—2)i.V+᪆஻+i='Z+],ᑣM2஺+6=஺஺-2,ᓽ(஽U1)(6—2)=4,஺bGZ,ᡠ஻U1=±1,±2,±4,ᦑ᦮ᦪ஺ḄᨬPQU3,ᨬᜧQ5.Z7+a15.EA“1ga+lgx0,x>0,{.+xᓽ(2஻—l)xv஻জt2஺-1=0uvᔠ⚪nঝt2஻U1<0uvᔠ⚪nঞt2஻U1>0u஻>yaZ2a—1[a>yi3ᓽீ{aW1f3,2512஻U19:ᡠ;ᦪ”ḄjQlA(0,1.16.|qᔠM={y1y=Q)v,xGR),}+1)(x-l)+(ᑴL1)(L2),1WXW2UENJM,ᑣHᦪ/„ḄjQlA.Sᫀ(U1,0)m+᪆y=ট',xGR=(0,+oo),NUM,

52ᓃ+1஺-1+1ᑛUlx—2ᙠ[1,2]:ឤ.|Xx)=(^7+l)(x—l)+(|M—l)(x—2),1—\m\>0,!)>஺,ᑣ1/(2)>0,ᓽ+>஺[—11ᡈ஻<0,ᦑHᦪḄjQlAU1,0.17.@MAqᔠ{1,2,3,…2Z—l}/eN*,%'2Ḅ£¤sq¥txG"uᨵ2k-xdM.ª«¬ᩩiḄqᔠMḄᦪ®¯ᑣ12=°&=.Sᫀ32*—1m+᪆²1,2,…2k-\ᑖ:³1´µU1,2´µU2,…k-]´hH,᝕ᓫ¹U³º³»Ḅ¼ᦪf½¾u¿ᡈ¾u"¿U«¬ᩩiḄqᔠM,º³¿ᡈ"¿ᐳ¼ÁÂÃ,ᡠMḄp#ឋᨵ2",᣸◀U¤qᑣp#ឋ2"—1,ᓽ31=2*—1,ᐳ2=3.10+7ᑖ⚗2ᭆ᳛1.2018ÈÉÊËEᵨÍஹÏஹÐஹÑÒÁÓ⁐ÕÖ᝞ØÙÚ⌕ÛᨵÜᐳ⚔ÞḄ¼ÚsÓ⁐"¾ᑣ"¾ḄÖ⁐ÙᫀᨵA.48ÁB.72ÁC.96ÁD.216ÁSᫀCm+᪆ᢥ᯿çè>Ö⁐AéCf஺éd-céC!-£éCHFécl,ᡠᵫᑖîïðñᦪòᳮôḄÙᫀCé.C.C.C.C=96Á.[A'BCDE-F]2.E20iõö»ᨵ16iU÷ö4iø÷ö.4»ùj2iú2i»ûüᨵ1iø÷öḄᭆ᳛A,41c32cl-3A190B95C19D95ᫀC

53+᪆ᵫ⚪ᵫᔠᦪ202Ḅᦪ!Ci"=190,ᐸាᨵ&'(Ḅ)ᦪ*ᐰ!'(Ḅ)ᦪ!C,6C-+C-=70,ᵫ.ᐺᭆ1Ḅᭆ᳛347075ᭆ᳛!6=◤=9ᦑ⌱C.3.=>?@ABẆDᡠF5)GH1IḄ)JᑖLM)ᙠ5ᙽPᡂ&᣸ḄMSᵪUᐸA,BV1IḄ)J⌕M)ᙠXYḄVᙽMSᵪUZᙳG\M)ᙠV]ḄMSᵪUᑣGHḄM)_`ᦪ!a"A.12B.24C.36D.48ᫀB+᪆b!A,8V1IḄ)JM)_`ᦪ!2X2=4)"ᡠc&ᐳᨵ4Al=24,ᦑ⌱B.4.e□ghi5jikᨵ3lmnoἠq⍝kgὃtuvw3lHBxoἠkjiᑮ᜜ᙢ|}᝞H&ljḄmnoἠq⍝k⌱`GHᡈljH&lmnoἠq⍝kGH!GHḄji_3lHBḄGHji_)ᦪ!a"A.24B.36C.42D.60ᫀD+᪆HB3lGHḄoἠq⍝kjiᑣᨵA?=6)",HB2lGHḄoἠq⍝kjiᑣᨵC᡻⚞-=36)",HBIlGHḄoἠq⍝kjiᑣᨵC,A,=18)".3lHBḄGHji_ᨵ60)ᦑ⌱D.Q5.2018•ḕ“᪥ὶὃ”"nX¡34,஻"£%=],ᑣ6X=2£¤a"-8¥8-2A.QB.¦C.QD.§ᫀB+᪆b!X¡94,pT,Q2ᡠcEX=4p=],p=yᑣ6X=2=C4U1—1"2=§ᦑ⌱B.6.2018•ḕ᪥¨©ªὶὃ"«J¬ᨵl᪗ᨵᦪ¯1,2,3Ḅ°ᳫ²l°ᳫᨵ&lᦪ¯.n³&l°ᳫᑮ᪗ᨵᦪ¯2Ḅ°ᳫḄᭆ᳛!´µ°ᳫḄᦪ¯!XḄᦪB¶·¸2,ᑣXḄ_¹!a"1284A.1B.'C.1D.gᫀB+᪆ºᑮ᪗ᨵᦪ¯1Ḅ°ᳫḄᭆ᳛!p,ᑮ᪗ᨵᦪ¯3Ḅ°ᳫḄᭆ᳛!q,

54E(X)=lXp+gx2+3Xq=2,ᑣᨵj1[p+]+q=l,\p=y11i2ᑣD(X)=gX[(l—2+(2-2Í+(3—2Î=],ᦑ⌱B.7.(2018ÓÔÕo)0<”I,n4ḄᑖÙᑡ᝞Û:e-10131Paa44~Ýaßᜧáa"A.E©ᜧ,஺ডßᜧB.E©æ°஺©ßᜧC.E©ßᜧ஺açæ°D.E©æ°,஺যæ°ᫀA333解+析---2-444ᡠcÝ஺ßᜧáEa஺ßᜧ£"©ßᜧᦑ⌱A.8.a2018•êÔgὃ〉ìឋîM"vᐜuð&⚩òJᑣᐸvVᡠḄóᦪô*!11Ḅᭆ᳛!a"A-18BU2C-36D6ᫀC+᪆ᐜuᢗð&⚩òJᑮḄóᦪᡂḄᦪøax,y,z"ᨵ6X6X6=216a)"5\ᐸvVóᦪô*!11,ᑣᑮḄóᦪûüᨵ&ᑮ5,&ᑮ6,ÝᒕÛḄ&ᑮḄóᦪ¸123,4Ḅ&láᨵ4A,)5\ÝᒕÛḄ&ᑮḄóᦪ¸5,6Ḅ&láᨵ2C,)5\ᑣᡠᭆ᳛!4Aþ'=ᯅᦑ⌱

559.ᓝᓅᶭᘤ20185ᨴ1820ᙠᐲ!"#$5%&'ὅᑖ*ᑮ3-./Ḅ✂234567"8-✂9ᑖ*:%&'ὅḄᑖ*;ᫀ=ᦪ?@AA.540B.300C.180D.150GᫀDH+᪆$5KᑖᡂMN⚪PḄ3Qᨵ1S,3U2,2SV="ᑖᡂ1,1,3W"ᨵ=ᑖX;ᑖᡂ2,2,1W"ᨵZ=ᑖX"ᵫᑖ\3X]ᦪ^ᳮ`"ᐳᨵC%A=+Z.ᵨ=150=./ḄᑖX"ᦑ⌱D.10.d□⁚gh"i᪥kᜓ!᠚n⌨pὁᦟstu"ivwkᜓᵨxyஹ{|ஹ}~=⊤-⁚"ᐸxyᨵ2-⁚"{|ᨵ2-⁚"}~ᨵ1-⁚"⌕}Ḅ⁚.}/"ᑣ./Ḅ᣸=ᦪ?@AA.48B.36C.52D.64GᫀAH+᪆:\"ᐜ⌱:-{|ᐭᑮ2-xyh":-{|ᙠxyḄV"Wᡂ5-"$}~ᐭᐸ:-"ᦑᨵAWAAA!=40@=A\"}~ᐭxyh"¡¢{|ᐭxyV"ᨵA£¤=4@=A\"}~ᐭ{|h"¡¢xyᐭ{|V"ᨵA¤A¤=4@=A"᪷¦ᑖ\3X]ᦪ^ᳮ§`"ᐳᨵ40+4+4=48@=A.11.@2018•©ᐶ«¬᫑®¯°A±²³´{Ḅᑖµᑡ᝞¸¤-101Pa0.25bº»)½"ᑣ.GᫀNH+᪆ᵫ±²³´ḄᑖµᑡḄឋ¯"`a+0.25+b=l,ÃE©=—lz+0X0.25+l",ὶËH`a=0.25,b=0.5,ᦑᵫ;ÌÍ`D(c)=a[-l-£(^)]2+0.25-[0-F(c)]2+/,[l-E(^]2=Ö12.(2018•×ØḕÚ□ὶÛi᪥ὶὃ)º(Ý:%—2)3=ao+aix+a2/H---F஺/,ᑣḄ=141+Ḅ+/=•Gᫀ:8-4H+᪆ãX=0`஻0=(:2å=—8ãX=1`஺()+஺1+஺2+Ḅ+஻4+஺5+஺6=(1—1—2)3=-8জãX=—1`஻஺:4]+஺2-'è+éߟ஻5+஺6=(1+1—2)3=0ঝ"জ:ঝ`2(஺]+஺3+஺5A=—8,ᡠí஺î+஺3+஺5=-4.

5613.2018•×Øḕïðᓝ᪥ñòAºx+y2x—5=஻ᵞ+45y***9+a^y2+a^y3++aO^cy5a2X+47y6,ᑣ஺4=1஺]+஺2+஺3+஻5+%+஺7=-ᫀ402/+᪆⚗O2X—5ḄPQOḄR⚗7S+]=ck2x5r*—yTTU=35V/⚗ḄXᦪC5X25-3X-l3=-40,T2=25V/⚗ḄXᦪCYX25-2X*—12=80,ᑣ44=8—40=40.Tx=y=15+02+03+04+45+46+07=2^15=2.14.2018•ḕ`a⊞ᓝ᪥ὶὃᙠG9ḄPQOgᦪ⚗,XᦪᨬᜧḄ⚗i.-ᫀj9?/+᪆⚗OḄPQOḄR⚗kOl+mc***=T9—3k=0,5k=3,ᑣPQOḄgᦪ⚗n■.pq᧕5st=2uXᦪ95ᨬᜧ:vuw⚗*J2c᪗9-3ஹ2=9y3.15.2018•ᗩᐶ|ஹa}|~|Ḅ5ᡠ᪥ὶᔠᡠ᪥ᔜ%2.ᙠ10⌱4ាᨵᩭᡠ᪥”A,ᑣP44Gᫀ7H+᪆ᙠ10%ivô⌱4%iv"ᐳᨵC1=./Ḅ⌱X"ᐜ⌱õV%ᩭ÷/:ᡠi᪥Ḅiv"ᨵc2=⌱X"¡⌱ᒕùḄV%ivᨵc¤cc=úû"ᡠíាᨵV%ivᩭ÷/:ᡠi᪥ᐳᨵc!ýcc=úû"ᑣᡠᭆ᳛ᛞᳮ=216.2018•ᨴὃᨵᜧஹᙢᙳᒴḄᳫ3ஹᳫ2!"#᥎%3ᳫ&᥎%ᳫḄᦪ5ᑣ஺*஺=.9-ᫀ25/+᪆ᵫ⚪45஺Ḅᡠᨵ789:1,2,3,;<*==>=&”C5io2—W—53319ᑣE(C)=1XJQ+2X-+3XJQ=-,

57g=*15X+*2☟3-¡17.*2018£¤ὃ¥¦ᑍ5=஻5*21+15+a4*2%+14++ᑗ*2%+1+ᑣa=5"3232/+᪆?=[|(2x+l)-1]\ᑣᐸPQOḄR⚗4+m·(2x+l)¸.(,¹=(-1)º5c§(2x+lm,ᑣ஺5=(—l)°g)5c?=¾,°4=(-1)1᧜¹=*.10+7ᑖ⚗3ᦪᦻᓄ1.¹ÁqÂyiᡃÄÅÆḄᦪ℉Èᨵ᝞ÊË⚪YnᨵÌÍ£ÎᐳᑖÑÒᓝ⚩ÔÕÖ×⚩.ËYÌÔᔜ5ØÙÚ”ᐸ4ÛYᨵ5Ôᑖ60ÑÝÞᑖ5ḄÑᦪᡂkà3ḄÍàᦪᑡË5Ôᔜ5âãÑ.Ë⚪5ᑮÑᨬâḄÔᡠ5ḄÑᦪi*A.15B.16C.18D.21-ᫀC/+᪆&èÔᑖᑮḄÑᦪ5X4ᵫ⚪4555=54]+—2—X3=60,/5i=6,ᑣḄ=©+*5-1X3=6+12=18,ᦑ⌱C.2.ìᜧí¹qîïðyᨵñòóôóᓝÒõö÷ᑖøùú.ûèÔâᓝü⌕þèøᦪᩭÿ.⌕ᑖ᜜.”996ᑖ〈8᝕!"#$%&'()*+,17/ᑮ%123.ᑖ45&6⌕78ᑖ9:᝕Ḅ<=᜜ᑣ%12ᑖ?ᦪABA.65B.176C.183D.184KᫀDM+᪆᪷Q⚪S?+2ᡠ?Ḅᦪ᪀ᡂ&7Wᦪᑡ{&},ᐸ^d=n,஻=8,$8=996.ᵫ7Wᦪᑡc"⚗fgS?8R+^X17=996,M?h=65.ᵫ7Wᦪᑡi⚗fg?08=65+A8-1BX17=184.ᦑ⌱D.3.ᙠpᕜ᧕s^tu“&”⊤x□z{|u⊤x▢z.ᨵᙢ□z▢zᔠᡂ&ᓶᐳᨵ23=8ᔠpsᡠ“᩽{{1ᓶ”.ᨵᙢ□z▢z&ᨵ2Ḅᨵᙢ□z

58▢z{ᨵᨵᙢ□z▢zᨵ1.ᡠḄ“ᓶ”{1ᓶḄᔠᓽᐳᨵᙢ□z▢z¡?ᑮ¡zᯠ*£¤ḄM+᪆.ᙠ&ᡠ“ᓶ”^?ᑮ¡z¡zា¦ᨵ□z▢zḄᭆ᳛AB1595A-7BC©D.gKᫀBM+᪆ᙠ&ᡠ“ᓶ”^?ᑮ¡z«¬®Ḅ¯ᦪ“=26=64,¡zា¦ᨵ□zᒹ±Ḅ«¬ᦪ஻=Y=20,ᡠ)¡zា¦ᨵ□z▢zḄᭆ᳛P==64=16*ᦑ⌱B.4.“µ¶᱄”¸ᜧºᡃ¼½¾ᜧᦪ¿ÀÁḄ¤ᵨᦪ¿Ã℉pÅÆsḄÇÈ᪗ÊḼᡃ¼ḄᵫÌᑮµÍÎḄÏᡂ.¸ᜧºᙠpÅÆs^Ð)ÑÒḄÓgᕈÕᦪ¿Ç⚪ᐸ^ᨵ&✌“×ØÙÚ”Ç⚪“ÀᨵÛ⁚×&ÝÞßÚᙳáâᜮ⁚ᓣÛåæ⁚çᓣèᨵ^é{⁚×⌕êÚᦪ%ßëᨵᐜíîᦟ?ᑮᜩ.”AñòóôᓣÛ3.9ᓣ.%ßßÚÙõöW&ᦪ÷.Bᵨøᡠ¿Ḅᦪ¿ùúû?^é{⁚ḄÙõABA.1.9ᓣB.2.1ᓣC.2.2ᓣD.2.3ᓣKᫀBM+᪆⌕ᢥßÚÙõöW&ᦪ÷ḄgßÚýöWḄ&ᦪ÷஻ᓣâþ%&⁚ßÚ/ᓣ3X253=3஻I+^-d=3.9,ᵫ⚪9X85X4ஹ73~T~“1=1.4,d=~0A,ᡠ!⁚#$Ḅ&'(஺4+%=+0+3-++0+44=20+7஻=2.8—0.7=2.1+ᓣ/ᦑ⌱B.5.+2018•45ḕ⊞89:;/ἔḸ>ᳮ@“ᗩBCDᑣ'F&G”.IJKLMNOPQRSTT'ḄU⚪VJ᝞X!ODYḄRSTᙠ[Yᜐ]!RSTḄ]☢☢'ឤ`[abc!OdSTḄT'`[.e4,B(!ODYḄdSTpA,8ḄT'F`[qA,2ᙠ[YᜐḄ]☢☢'Fឤ`[ᑣ᪷hἔi>ᳮjkpJ4Ḅ+/A.ᐙᑖFo⌕ᩩrB.o⌕FᐙᑖᩩrC.ᐙ⌕ᩩrD.CFᐙᑖuFo⌕ᩩrvᫀA+᪆”y4BḄT'F`[ᑣᙠ[YᜐḄ]☢☢'Fឤ`[”Ḅ⌮ᔲ|⚪(“y

59A,8ᙠ[YᜐḄ]☢☢'ឤ`[ᑣA,8ḄT'`[”ᵫἔ}~ᳮ᧕⌮ᔲ|⚪(|⚪ᑣ>|⚪u(|⚪ᐙᑖឋᡂ`DḄ!Oᙊ┵ᑖ᎔ᑣIᙠ[YᜐḄ]☢☢'Fឤ`[IḄT'`[o⌕ឋFᡂ.ᡠ“A,BḄT'F`[”J“A,8ᙠ[YᜐḄ]☢☢'Fឤ`[”ḄᐙᑖFo⌕ᩩrᦑ⌱A.6.JᡃKLMḄᦪ℉ᨵ᝞U⚪“ᨵ¡ᑖ¢£9¡ᡠ¤¥¡[.UᔜdS.”ᐸV(“¨kᵬஹªஹ«ஹ¬ஹ¡ᑖ5¢ᵬஹª!¡ᡠ¤«ஹ¬ஹ¥¡ᡠ`D®ᵬஹªஹ«ஹ¬ஹᡠ¯°ᡂ[±ᦪᑡ.U¡ᔜ³´¢µ”+“¢”JLMḄN¶·¸ᓫº/.cOU⚪ᵬᡠ(+/A?¢B.'¢C.»D:|¢vᫀB+᪆¯⚪eᵬஹªஹ«ஹ¬ஹᡠ¢ᑖ(a—2d,a-d,a,a+d,a+2d,ᑣᵫ⚪jkci—2d-\-a—d=a+஻+d+஻+2d,ᓽa=-6d,½a—2d+a—d+a+a+d+o+2d=5a=5,••a=1,ᑣa_2d=q_2X7.ᡃKLMᦪᐺ¿“ÀFÁ”ᨵN⍝!ÃÄᜋU⚪@“ᨵÆÇᓝÉ!ÃÊÄËÌᔜNÉᜧÃÌÎÏÐÃÌÎÑUdSÌ`⌾µ”U⚪!ÃᙠÓdᜩ`⌾+/A.3B.4C.5D.6vᫀB+᪆ᵫ⚪jkᜧὁÃÖᜩᡭØḄÙÚJ1(✌⚗2(ÝÞḄ[Þᦪᑡß஻ᜩᡭØḄÙÚà(á=2"-12—I1-&1DᳮÐὁÃÖᜩᡭØḄÙÚà(Nâ=2-ã1-22"-1+2Nä=10,“63,4,å”=4.ᓽ!ÃᙠÓ4ᜩ`⌾.8.ᡃKLMᦪ℉ᦪᨵ“ᜩæçèé”⚪@ᙠéêᵨNOᙊìíḄᜩæçîéï.ᜩæççðñò(9Éóôçõñò(NÉ9ôçöNÉóô.yç'ïöôᑣ÷ᙢùé¸J+/+ú@জ÷ᙢùé¸[üç'ïT'◀çð☢'ঝNÉ[üᓝô/A.1ôB.2ôC.3ôD.4ô

60vᫀc+᪆᝞ÿᵫ⚪ᜩ☢14☢618.•.•9☢/14+6=10,ᑣḄ5X962+12+6X10=588ᐔ!."ᙢ$%&'(᜻?=3.ᦑ⌱C.9.ᑢ.ᙠ0Ḅ123456789:;<ᱯḄ!>ᩭ@4ᳫḄB0CDEF9ᳫḄGHᐜ@4J:;K“Mᔠ!O”ḄḄ.ᑢ.QR@4“Mᔠ!O”ḄSᳫḄTUV*XYZ9[“Mᔠ!O”Ḅ@4]^B|j|v^=r3-V»_rᳫḄ`ᓽb!Ḅcdᙳ2r,fG@491/ᳫ=/hiᡠᨵcdlᔆḄbnc┵ḄVbcd2rḄb!Ḅ!Opq!„ᑣs'(HEA.5BtC.yflD.A/3uᫀCw+᪆ᵫ⚪V^si=r3—|v,zz{ᑍ},=53,10.123457ᔁ51ᖪ7i:;⚪“ᨵᙊᚽᴿᕜn::.

61uBᓟ::ᓝ.5BᕜTᓝG:”.ᡠḄᙊᚽᴿHᙊḄ“ᕜTᓝG:.”HBᙊᚽᴿᙊḄBq=X☢ḄᙊᕜdḄ"!X.ᑣᵫ¡ᙊᕜ᳛ᐔḄ£¤A.3B.3.14C.3.2D.3.3uᫀAw+᪆ᵫ⚪ᙊ☢Ḅᙊᕜd4811•..ᙊᚽᴿᙊḄV=*X☢ḄᙊᕜdḄ"!X1.[2K/?=48,AV=T7X48"XH=2112,.]12[7i9/rXll=2112,.•.ᐔ=3,R=8.11.·¸¹ᦻᓄ¼½ᑁ¿À[ᦪÂḄÃÄÅ᝞ÇᡠÈḄÉ᩽ÇHᵫËÌÍ;ÎÏÐÑᡂḄᙊÏÇᫀᐙᑖÕÀ[Ö×ᓄஹÃĹ:ḄÏ^ÅஹÙÚÅ.F9Û}BÜÝÞᙊ஺ḄᕜdÙ☢àá"ᑖḄâᦪÄ;ᙊḄ“ãÅâᦪ”.F9ᑡå⚪BজÃ(ç:;ᙊ஺ᐸ“ãÅâᦪ”ᨵéᦪ;êঝbìâᦪy=sinxàáHéᦪ;ᙊḄ“ãÅâᦪ”êঞâᦪòx=lnf+FHHõ;ᙊḄ“ãÅâᦪ”êটâᦪy=/xH“ãÅâᦪ”Ḅᐙ⌕ᩩùâᦪú=^ᑜḄÇüHýÃÄÇÏ.ᐸbþḄå⚪H.ᑏᡠᨵ⚪Ḅᫀজঝ+᪆ᙊḄᙊḄᕜ☢!"ᑖ$ᦑ&'()*+ᙊ0,ᐸ“012ᦪ”ᨵ5ᦪ+$ᦑজ6ᙊḄᙊ7ᙠ92ᦪy=sinxḄ&@AB$ᑣ92ᦪy=sinDEFᙊḄ“012ᦪ”$ᦑᨵ5ᦪ+ᙊᡂH$ᦑঝ62ᦪIr=lnLx2+q?P?ḄᜧRST᝞V$

62ᦑᐸPXYᙊḄ"012ᦪ"$ঞ┯]62ᦪy=yLxḄSTEA&@S^$ᑣy=JOxTE“012ᦪ”$_2ᦪy=ᐔ0E“012ᦪ”!$STP*aEA&@S^$᝞Sᡠb.ᦑᫀYজঝ.12.ᙠᡃfᓭhᦪijᩰlᡠ℉ḄnopqrstL1261v*wA$ᵨ᝞SAᡠbḄz{^$|}⚗Ḅ.ᙠᑮ1623v$sfᦪijᓱḄ℉L1655v+z{^.vᩭf᜜⌲⚗ᡂ'Af$ᡠᨵwB@E“Afz{^"LChinesetriangle,᝞SA.17¦§¨fᦪij©₈«¬“©₈z{^”᝞S8.ᙠᩰlz{A®¯°±²³ᐵµ¶·C6+C>=CA·,ᐸA"E±ᦪ$rGN.»¼½B¶$ᙠ©₈z{^A®¯°±²³Ḅᐵµ¶E.2346455101113--111163-4-12112111111-4^56060)520302(1111--663030]]…_…]]¾Iplr*l…pipr…plC*n-\CrItS8C1£IτIc’τJi+2jj+lw+2'^/i+l13.L2018¿ÀᦟÂÃ⁐ÅÆὶÈ〉ÊឋὃÍnpqrÎtA$Ï☢Y^Ðᨵ*ᩩÒÓÔÏ☢ᚖḄÖÓ┵@Y“□Ù”.¬ᨵ*“□Ù”Ú*ABCO,ÝÞᐸßY8,AB=2,BC=3,ᑣF“□Ù”ḄᨬÒÓá'1⊤☢á'.ᫀã21+3ä+᪆ᵫ⚪)Þ$F“□Ù”æS᝞Sᡠb.

63pᵫßV=^XABXBCXPA=8,ÞçPA—4,...FÖÓ┵ḄᨬÒÓè$⊤☢Y2X3+[2X4+3X4+2X5+3X2^=21+34.14.npqrÎtEᡃféêᑁì᩽YîïḄᦪið℉$wAᨵ᝞Vñ⚪·“òᨵóôõöᑁ{$Vᕜ÷ø$çùø$ú·ûYôüýþ”ᐸ)ÿ“ᙠᑁᜋᜐᚮ᝞ᚮᙊ┵ḄᑖᚮḄ8ᚮḄ5ᚮḄ!ᚮḄᔜ#$%”()1*Ḅ+1.62,-ᙊᕜ᳛+3,012ᚮḄᨵ________*.6ᫀ228+᪆;ᙊ┵Ḅ☢=>r,ᑣ@=8,8AZ71ᦑᚮḄ*DEᐔGH2X5Iᔁ%,-VI*Ḅ+1.62,-.L1஺N"9•1.0215.ᦪQRᦻQᨵT#᜻ᝯḄὶX᝞YZᨵ[ᦻY“\]᱄_`]a”bcdefgcd⌮f.ᦪQZᨵ[ᦻᦪ᝞343ஹ12521jklᦪḄ[ᦻᦪᨵ11,22,33,…99ᐳ9ᑣolᦪḄ[ᦻᦪZᏔᦪḄᭆ᳛r.4答案-98+᪆olᦪḄ[sᦪABA,Aᐳᨵ1ᑮ9ᐳ9ucvᓽ181,282,383,…,8ᐳᨵ0ᑮ9ᐳ10ucvᓽAOA,A1A,A2A,A3A,…,ᐳᨵ9X10=90DᐸZᏔᦪArᏔᦪᐳ4ucv,ᓽ282,484,686,888,

64Bᐳᨵ0ᑮ9ᐳ10ucvᓽAOA,A1A,A2A,A3A,…ᐸᨵ4X10=40ᡠdolᦪḄ[ᦻᦪZᏔᦪḄᭆ᳛/>==/16.QḄᦪQᙠ☢ᵨᡈ⊤¡ᦪ.¢£Ẇ¥¦᝞ᡠ¡Ḅo§ᦪ¨o§ᦪ1,3,6,10,…©ᦪᑡ«¬,¨c5᦮◀Ḅo§ᦪᢥ²ᑮᜧḄe´µᡂ·ᦪᑡ2“¬.cd¹ºI36101019rᦪᑡ«஻஻¬ZḄ¼⚗D282ᦇ1=.ᵨᦇ⊤¡.5kO5k-\T6ᫀ15049ফ^~-8+᪆ᵫ⚪ÅcA஻஻=1+2+3H---Ç஻=2~ᦑ஺1=44'b2=Cl5,È=஺9'34=&10,%=஺14'66=஻15'ᵫÉÊËc)ẑÍ⚗=5ᔩ+%GN*,5A-15Ï-1+15kO5k-lTÐ&-1=஺5*-1=2=2'ᦑᓃ2019=ᓃ2X1010-1=஻5><1010T=45049'ᓽÐoi9rᦪᑡ«¬ZḄ¼5049⚗.17.Ö×Ø1ÙÚrᡃÜÝᑁÞ᩽àáḄᦪQâ℉äZᨵ᝞åæ⚪“çᨵèéoêëêìÞíî*æïð%”ᐸÅñ“çᨵ-©ABCD-ABCiAḄóèô3êᓽAO=3ê4ê5cõíî*æöóèḄr#$%”()1*íḄ2.7,-ê10ᑣåᑡᑨøùúḄr.ûᑏᡠᨵùúýþḄ´ÿজḄ2ঝ☢ADBGᡠᡂḄᗔঞABC஺-AI&GOIḄ᜜$ᳫḄ⊤☢'(ᐔ*.,ᫀজঞ.+᪆ᵫ⚪34510000X2.7=30X45X44”.?@=20AB=2A4ᦑজD☢AOBGᡠᡂNC8G4

65ᑣsinNCBCJKL=M13ᦑঝ┯O,QḄஹSஹᑖU4.5ஹ3ஹ2,ᦑᐸ᜜$ᳫḄ⊤☢'4AWὡYὡ2=ZA*4ᦑঞD.7t10+7ᑖ⚗4+,-ᦪ%+,.31.2017•\]^_cos%=aᑣcos2%bcA11I1A-B-C-D--44-88答案D1解+析2-8-2.^_sina=J4,a>(0,஺ᑣcos(2a+fḄ()4h-34h+3A.B.10104-3h3hi4C.D.1010,ᫀA.+᪆,.•sina=1^,aG(O55=71^=j,•sin2a=2sinacosa=2XᘵX*l2cos2a=I—2sina=".ᦑ⌱A.3.oᨬhᕜrJtḄsᦪux=4§sinAGx++coscux+⊱wK4ᡠ?Ḅsᦪ.+᪆xAA.y=C.y=2sin2xD.y=2cos|

66,ᫀA.+᪆ᵫ⚪3?y=2sintwx+z+{=2sincwx+427r5sᦪḄᨬhᕜrᐔ4ᡠ|5=ᐔ4ᡠ|3=2.osᦪ᜜Ḅ}~ᔣ*ᓫwK4ᡠ?Ḅsᦪ.+᪆xy=2sin12AT+ᐰᦑ⌱A.2\[5Vio4.^_sin஺=51sinQ?—«)=£ᙳ┦4ᑣ£bcA10'%A5ᐔrᐔiᐔcᐔA-12B-3C4D-6,ᫀC.+᪆5sin஺=^,sin(/7-a)=—ᔠ஺4᜛ᙳ┦4|?cos஺=ᙶ4cos/?—a=3^p^,203¥¦§ᡠ|sin/?=sin[a+(6—a)]=sinacos(/?—a)+cosa-sin(/J—a)=510ᓝ525^2_V250i2'ᡠ|ᦑ⌱c.5.ᙠAABC4ᑁA,B,CḄᑖUa,b,c,aABCḄ☢'S,2s=(a+/?)2—c2,JtanCbc()344A.—B.-gC]Dj,ᫀB.+᪆V2S=(tz+/?)2—c2,/.absinC=(0+஻)?ic1—cr-Vb1—(?+lab=2abcosC+2ab,44-c-故选B53

676.^_sᦪ.£x)=2sin((ox+9)+l(M¬0,|®4),¯°±²i4=2—*x),µ3xGR,¶ᨵ¸X)¹).º஺»ᨬh¼4sᦪ¸X)Ḅᓫ½⌴¿ÀÁ()AÂ+,%Ã*ZB.Â+2E,Å+2E,kRZcÆÇ+b{+ᵨ,0ᐔ71D.Æ—É+2E,É+2ÊË,kSZ,ᫀA.+᪆ᵫ/²f=2—/(x),ᓄ±²iJ+4Ð)=2,5µ3xGR,K■jrᡠ|x=4¼4¬(x)»?ᨬh4ºÑ»ᨬh¼4ᓽᕜrTᨬᜧ4??Tz4ÕÖ/=§=6,3253sᦪ/U)=2sin(6x+e)+1,ºÚ=м4¸Û»?ᨬh4ᡠ|2sin(¥+s)+l=—1,ᓽ5Ý(Þ+9)=—1,4+g=¥+2E,keZ,8=2ᦇᐔ4kEZ,■jr5□u54ᡠ|3=஺4ᓽsᦪ@x)=2sin6x+l,â2E+'W6xW2E+åkGZ,,a/di.7C//kit.Tt-æ"y+ÉWxWç+agz,

68ᡠ|sᦪ./UḄᓫ½⌴¿ÀÁè+z4f+y],kez,ᦑ⌱A.7.᝞}ᡠêḄsᦪy=sins+pA3>0,0<ëᙠÀÁiì4íîḄ}~4osᦪ}~ᔜðḄñᙶ᪗óhᑮõᩭḄi÷Aøᙶ᪗aù4úᔣ*û4஻>0ýᓫwK4ᡠ?ᑮḄ}~ᐵcÿ=ᑣ஻Ḅᨬ©yஹߟATB-6C-8D-24ᫀC+᪆ᵫᦪy=sincox+᜛cv>0,0<᜛Ḅ7=="—!"=ᐔ...஺&'.ᦑ)./x=sin2x+§Ḅᔜ+Ḅ,ᙶ᪗/ᑮ1ᩭḄ!34ᙶ᪗567ᔣ9:;w/n>0<ᓫ>?@Aᑮgx=sin4B!4,"+1Ḅ•••ᡠᐵFGHIJ,**.4Xy^—4w+^=^+^7i,kCZ,஻I"!%ᐔkGZ,ᵫ஻?>0,Nᦇ=1PQḄᨬᦑ⌱C.O2S8.ᙠU4BCVZC=60°,BC=2AC=2+஺ᙠWBCY5Z/84஺=\ᑣC஺]FA⌳R_D”uA.3»-J3-34ᫀD+᪆VC=60°,BC=2AC=2ABCD

69AB^AC^+B^-lACBC-cosCAB^Bf^-AC29+12-3ª••cos"ߟhᮞ!=2X3X2-=2'8=30஺NBAC=90஺....2^7/Dn.s

70ZBAD=^~ij~^1_____ᔊcosZBAD=yj1—sin2ZBAD=ᔊsinZDAC=cosZBAD=j_9UABDVᵫz{|ᳮAO=s;UADCVᵫz{|ᳮAD=PC^,rsinZDAC2A/3-DCX|OCXᙶ.■2^ߟ77஺C=ᦑ⌱D.9.ᦪ1=23113:+00>0,/§=2,ᐔ=0,Yᙠτ§ᐹᨵᓫឋ3ḄᐳᨵA.6

7110.ᦪXX=sins—COS0X”>O,´µ¶᜜=-1ᙠ0,ᐔᨵY¸ᨵ¹<ºᦪ᪷ᑣºᦪ஺Ḅ½fl3r\a251AA<62§B\2,6JCᓲÂÃDO~ÄÅC\6'2JD.26JᫀB+᪆_Ax=2sinox-§,ÇÈÉxḄᦪ᝞ᡠËÌÍ2sin5—2=!Å,ᐔᐔIkGZᡈ¤Ñ!Å=Ò+2%ᐔGX—§=!5ᓝ2E,ᐔ,2kli—Ó33ᐔτ2kn,..x=7-+1ᦇÔZᡈÑ=Õ+,kCZ,6coco2O0coÖGHy=-ly=/Uᙠ0,+8Ú°ᑮ9ḄÛ4<Ü+A,Û5<Ü+8,ᑣ!Ý+Þᱥ!à+Þ•.•´µyu=-iᙠ0,ᐔᨵY¸ᨵ¹<ºᦪ᪷•F8᝞ᖐ+äåᖊ7259çè11.aG0,Bsina='^~,ê!Jtana—+=.3ᫀ-5+᪆aG0,´,2ᗗ,4gᡠ17'sinaᡠtana=»^=5tana—13ᡠtan|a-4.1+tana5,12.UABCḄᑁîA,B,CᡠḄWᑖða,b,c,Ya,b,cᡂ]òᦪᑡ.sin8=ô

72cosB=—,ᑣa+cḄᫀ3õ+᪆•:a,b,c,ᡂ]òᦪᑡ512•sinB==1஺,cos3=,13acac=13,b1=(T~\-c2—2accosB,.\a2+c2^37,.,.(a+c)2=63,.a+c=3¬.13.(2018•øùḕûüᓝ᪥þÿ)ᦪyCx)=4sinx-sinG+§,ᑣᦪᑜḄᨬᕜT,ᙠo,Ḅ!"#ᫀit(0,3]++᪆/U)=4sinxsin(x+/=4sin/[sinx+1cosJ=2sii?x+2sinxcosx1—cos2x+ᵫsin2x=1—2cos^2r+?J,ᑣᦪ;<=Ḅᨬᕜ7=?=ᐔAxG0,3B,2x+CD,E=Fᑣcos2x+1=w—1,£=,ᡠJKx==1-2cos2x+1=e0,3M.14.2018•QRḕT᪥VWXὶὃ=ᙠaABC^F_A,B,Cᡠ`Ḅaᑖc"஺F4c,ec=2b,sinC=wFᑣsinB=Fe2a2+g+°2=4,ᑣAABC☢jḄᨬᜧl.3亚答案-85m3++᪆n"c—lb.sin஺=oᑣᙠpABC^Fᵫqᳮstu=vwFᓽsinB=-^—=g.ᵫ2஻2+/+C2=4,{/+02=4—2a\}~M&?csin=2=E-M—COS2A=

73_஺24—3a2=2ᡝ+02=24—3/=2mm-16-16""m~16~4-2d=2d-3/=2=~16—m—16~=m+/AAb=cBFEᡂ=FᑣA஺2=,BF/csinA{ᨬᜧ?ᑣpABC☢jḄᨬᜧ"/.15.2018•QRḕ□ὶ᪥ὶὃ=┦__ABCḄᑁ_4,B,CḄ`aᑖc"a,b,c,a=l,B=2A,ᑣ/________,6Ḅl________.COSzi#ᫀ2F=++᪆ᙠpABC^Fᵫqᳮ{'=FsinrisinD“sinBh_____asinB_____asin2Aᑣb=sinAcosA-sinAcos41sinAcosA267sinAcosAsinAcosA=2a=2^n"pABC"┦__,n0

74AAtanC=«,ᓽC=BEᡂFᦑ—FᡠJ¦B8=€;ᓽᓃ=c=l,a=SF¦B/2+/==3²1X1X´F+{r=-\/3—1.17.᝞¶FᙠpABC^FAB=/,AC=1,JBC"·a᪀⌼Ὺ»_pBCDᑣ{ᑮḄ¾☢¿aABDC☢jḄᨬᜧ".ÀDFA#ᫀ1+ᙶ++᪆ÂNB4C=஺FᙠpABC^FbAB=gAC=1,1yFiᐸ☢j"S,=2XV3x1Xsin3=^sin3,ᙠpABC^FᵫÆqᳮ{BC2=AB2+AC2-2ABACCOS9=3+1-2XX1XCOS஺=4-2COS6»,ᡠJῪ»_pBCQ^Fᐸ☢j"S2=gBD.CZ==/x1BCXmᙶcos0,ᡠJ¿aA8OCḄ☢j"S=S|+S2=^sin஺+1mᙶcos0=1+1sin9-=,ASin6—஽==1BFS{ᨬᜧFᨬᜧ"Smax=l+1.10+7ᑖ⚗5/☢ᔣ21.£=,E"_A8C^8caḄÐᑖÑFBC=2,ᑣQ=•☠Ó=A.1B.|C.yD.y#ᫀC++᪆᝞¶F

75cE/X-\AB\=\AC\=2,(.AB,AC)=60°,,D,Ela8cḄÐᑖÑF.ADAE=Ô+Ὂ.(Ö+×2--9—X4+'X2X2>4+1X4=ᔁᦑ⌱C.yyZ7y2.ÂPlaABCᡠᙠ¾☢ḄmÑFe|2ᡂmtm"|=2,ᑣ■Ü+ÝḄᨬ"()A.1B.1C.-2D.-1#ᫀC++᪆ᵫ|2Ümtmt|=2,Þ^\AP+I^+AP+PC\=\AB+AC\=2.ÂBCḄ^Ñ"஺Fᓽ|ß|=1.ÑlpABCᡠᙠ¾☢ḄàámÑF஺"AO^Ñ..PAPB-\-PAPC=PA(PB+PC)=2PAPD^2(pb+OA)(pb+ob)^2(Pb+dA)(Pb-dA)=2(PO2-dA1)->117=2P஺m/ߟ/.

76AAä=0,ᓽÑPåÑ஺æᔠBFÐ.Ü+ᡈᨬéᦑ⌱C.3.2018•QRᦟëì⁐îïὶð〉òឋὃô=ᙠ┦_AABC^F_A,B,Cᡠ`Ḅaᑖc"a,b,c,ea=2,c=3b,ᑣõ•öḄ"=€B8C.÷,8#ᫀD\3b)2+b2>4,++᪆ᵫpABC"┦__Þ(3b)2,(3h)2+4>b2,21-<2<-52øù=⎀~ᓃ=4ý+26þF4=,ᦑ⌱D.4.2018•QRḕT᪥VWXὶὃ=Â6»"ÐÿᔣmḄᜳ0<Ḅᦪ1,1,g+MᨬᑣḄA.஺"ᱥ$ᑣ%&$B.஺"'|$ᑣ%ᨵᨬᜧC.஺$ᑣ%|+D.஺,$ᑣভ.|/Ḅᜧᐵ1,$2ᫀB4+᪆\b+to|2=Z2|a|2+2ta-b+|Z>|2-r|a|2+2r|a||/,|-cos6+|89:ᐸᦪ<ᨵᨬᡠ_2|᜜|2?s8__l*]cosj_]<2|g|-|^|cosf)l^lcos0ᡈ3|AB%/D9:0<6

77A.4B.4-72C.2D.22ᫀA4+᪆MOA\=\OB\=OA-OB^2,ncosOA,OB=2ᓽᔣo1,ᔊḄᜳ:qᑣ,rs:i=1,t=-1,ᑣᵫ5v=2w+஻t|2|+%W1,x஻6Rn]Pᡠ⊤jḄkl:1,-1,-1,1:⚔]Ḅz{klᑣᐸ☢m:2X2=4ᦑ⌱A.6.2018•MNḕeQ|᪥~W☢ᔣQ,b,c_`ভ=|/=஺•=2,|c—a|+\c-2b\=2y[3,ᑣc-a+Z>ḄA.[4,10]B.[6,+0°C.[6,12]D.[12,+82ᫀC4+᪆9:%=|+=°=2,1JTᡠcosa,b>=2ᡠᔣ4஻Ḅᜳ:ᑣ,rsa=OA=2,0,b=OB=\,2b=00=2,2c=0C=x,y,ᑣ|ca|+|c—2b\^\c~ac—1b\=\lb—a|=2ᓽ|ᓝ|Ḅv|=2GG]CᙠA஺IᡂD|c-a|+|c—26|=26,a1c=2,y0WyW25ᑣc-a+b=2,y3,=6+y2[6,12],ᦑ⌱C.7.ᙠ48CRAB=2,BC=3,ZABC=60°,AD:BCḄ஺:4஺ḄR]A0=XAB+uBC,ᑣ+஻214-B-C-DA.3232ᫀA

784+᪆ᵫ⚪•=|||Ḅcos120஺=3,D஺:A஺ḄR]AO=AAB+HBC,ᑣ¦§=2¨=2©+2ª«¬n•=2■+2஻¯•°=2/L4B-BC+2//BC2=-6%+18஻.DAO:BCḄ¹.º»ᚖYᑣAb•=0,ᓽ62+18஻=஺,¬n2=3",D=2¿+2“Á?BD=AD-AB,ᑣç=2-1Ä+2ÅÆ.1ᐳᑣ22—1=0,1I2Ê=᱇஻=,ᑣÌ+"=].ᦑ⌱A.8.2018ÎQÏÐÑMḄᨬᜧ"ᨬᑖÓ:M"Mmm.W☢ᔣmb,c_`ভmax=|b|=a/=ca+2஻-2c=2,ᑣᓝA.\d-c|max_2B.H+deSᓝC.|஺C|min=2D.M+cèᳮö2ᫀA4+᪆ᵫভ='|=஺Ü=|஺Ý|cos=a,b>=2,ncosீ஻b>ᑣᔣa,bḄᜳ:ᑣ,rs஺=o1=1,=~=—1,C=dc=x,y,ᑣᵫ஺,஺+2——2஺=——2/—2y+3x——y=2,᦮ᳮnQ_¥2+Q+g2=/ᡠ]Cᙠ]æ:ᙊèé:êëḄᙊD9:|Q—c|⊤j]C.]41Ḅìíᑣk»c|max=Y¥f+_:_+óôõ,ᦑ⌱A.

799.(2018•ùúûὃ〉þឋὃ)ᙠA8C஺AC,ᙠᢗᑖ3,-1,ᑣ)ᙠḄᢗḄ"#()A.(-1,+8)B.(-1,3)C.(0,+8)D.(0,3)+ᫀA-+᪆/0Aᙶ᪗30ᡠᙠ56x890A:ᚖ5?☢5Aᙶ᪗BᑣᵫDEᙠᨬᢗᑖ3,—1HI=2,K=3,ᑗ=1,ᑣMNOC(3,a),D(l,஻)(60),ᑣST(U1,a),BC=(1,a),ᑣVᙠWḄᢗᔩY=-^[,\BC\7a+1d—IO#஺)=_=Q,ᑣ᧕Hbᦪ#஻)Ꮤbᦪ,2cr\ja2+1(672—1)31a'+3஺e/g)=-a-z-+--]---2(a+1)y/a?+1ᑣ᧕H/஺)ᙠ(0,+8)ᓫk⌴men0)=-1,oQf+8q14)f+8,ᡠd®=¯G(-l,+8),ᦑ⌱A.\BC\R+l10.(2018•wxḕz0{ὶὃ)}~ABC,AB=2,BC=3,AC=4,0஺48CḄᑁ^1=OAOB,h^OBOC,I^OCOA,ᑣ()}A.h

80ᳮl^OBOC^r-\QB\\QC\,2/3=d=JU|'\HC\+\HA\=4,\MB\+\MA\=2,.\HC\>\MB\,.\AH\\HC\>\AM\\MB\,.,./<1+4¢£=12,A\a+2b\=[(a+2b)2=273.12.}~ᙊḄ1,A,B,C,஺¤ᙊ¥0e¦+/=ᑐ)ᑣABC☢¨Ḅᨬᜧ.+ᫀ1-+᪆᝞ᡠªᵫ«+D=D~ABDCA,B,C,஺0ᐳᙊ...ABOCᓽBCᙊḄ51AB2+AC212S=]A3ACW1------2------=஺~oA஺#ᙊḄ5qABCḄ☢¨ᨬᜧ..•.oAB=ACqAABCḄ☢¨Hᨬᜧ]x4=l.13.}~☢ᔣa,b,ভ=2,\a-b\=2\a+b\,ᑣ|Ḅᨬ________,ᨬᜧ

812+ᫀ²6-+᪆³´Uᵫ|aU=2|.+µ|,H(a—8)2=4(a+6)\¶·᦮ᳮH3d+3y+10a7=0,Oᔣa,ஹḄᜳAº»ᓽ12+3¼+20gleos0=0,12+3|½ஹ¾cos0201bl112ᓽ3|¿U20|ᑗ+12W0,-HÀW|b|W6,2ᦑÁḄᨬÂᨬᜧ6.³´Tᵫ|U|ÃW|a-bÄ2\a+b\W2(Å+\b\),HU2(2+|)W2U|W2(2+|b|),»Æᯠᡂ?,ᳮ+|2|@UÉ=20+³µ2|UÊIᓽ2|2U2+Ë2HU2U|b|<4—2|Ì<2+|Ì-H§<|b|W6,2ᦑಘḄᨬÂᨬᜧ6.14.(2018ÎᐶÐ᫑ÒÓÔ)O0102ᓫÕᔣ,ᓫÕᔣ6=Ö1+×2,x,y£R,ØÙḄᨬᜧᖾᑣe”e2ḄᜳA.ᫀ-+᪆ÛᙳḄᜳAºᵫe,e02ᙳᓫÕᔣee=xei+ye2Hᐵ

82+ᫀ2-+᪆ûভ=|=஺µ=2,ᑣMNO஺=ü1,b=—1,ᑣx=22—1,y=y[3m+n,m—n,ᑣy—ýü஺+=üþ+஻ÿ஻22—1250=6஺஻+஻-6=6,+஻=2,ᑣm+H2~2"=2,=஻=1ᡂᡠ//+/Ḅᨬ2.17.2018•!"ḕ$%“'᪥ὶὃ”,G-./5஺Ḅ012,G3456AB,AC78_»_»_»__»12ᑖ:;x=2,ᑣy=1>SZMMN=/MBCᑣx+y=.Eᫀ12+᪆H,G.ABCḄ01ᓽ,GaABCḄ%ᩩK5Ḅ;,ᑣx=3,MA8ḄK,ᑣ45MNᓽAABCḄᩩK5ᡠᙠḄ45ᡠ,N6,C0ᔠᑣAN=AC,ᓽy=l.H,G.ABCḄ01ᡠN=/O+/)ᑣMG=AG-AM=§(48+AC)-xAB=(j—Q3+§4C,GN=AN-AG=yAC-^(AB+AC)=(y-ᓻ-gOᵫἑ;6Vᐳ5XᙠYZᦪ2\1x)O+/Ab=a[Q_'04C-gO],ᓄ`x+y=3xyfaHS&AMN=

83ᡠl^1x|AB|-y|AC|sinZBAC21——=1X/8HAClsin/BAC,2xy=ybijx+y=3xy=2.10+7ᑖ⚗634561.de"-7ᩩghḄ45,a,᜛-7jghḄk☢ᑣmᑡo⚪Kqro⚪Ḅjᦪsজ>_La,a.Lf]ᑣ஻᜛ufঝ>_La,a//p,஻U᜛ᑣJ_஻uঞ>mUa,nC.fi,tn//n,ᑣa஻4uট>஻_La,n,mA.p,ᑣml.a.A.1B.2C.3D.4ᫀB+᪆z<জ>஻?_La,a,ᑣ஻?஻.ᡈᡠgqruz<ঝ>᪷J_a,a//p,ᑣm_L᜛aᵫ஻U.,ᡠ஻?_L஻-qrḄuz<ঞmUa,tn//n,ᑣa஻4ᡈa6;ᡠgqruz<ট>஻_La,n,ᑣ஺஻£,aᵫ஻ᡠm_La-qrḄ.qro⚪Ḅjᦪ2,ᦑ⌱B.2.Ḅ%᝞ᡠᐸK5ᙊᑣḄ⊤☢)A.3ᐔ+462B.3%+26-2+2g-2D.^+2A/2+2ᫀA+᪆ᵫ%-jᙊ᢬¡j%¢£¤¥%,

84S=7tXlX2+2X^X7tXl2-1x2Xl^+2xV2X2=3ᐔ-2+4A/2,ᦑ⌱A.3.s2018•²³ஹ⊞³ஹ¶·%ᙢ¹º»¼¢┵Ḅ%᝞ᡠsᓫ¿Àcm,ᑣ¼¢┵Ḅ-sq4%8?-1-1A.2cm'B.^cm'C.4cm'D.8cm'EᫀB+᪆ᵫ%Ǽ¢┵ḄÈ☢-8É2cmḄqÊË$2cm,ᡠ¼¢┵1QḄV=^X22X2=Jcm3,ᦑ⌱B.4.ÍÇE,F,H,Gᑖ:-¼☢ABCQḄ¢AB,BC,CD,D4Ḅ,AE=EB,BF=FC,CH=2HD,AG=2GD,ᑣmᑡÐÑK┯ÓḄ-sA.AC஻k☢EFHB.BO஻k☢EFGC.45EG,FH,8஺;

85DC4BஹA.ᓃ+ö2+ᓃ=%Si+$2+S3=S4B.V+V+V>V5I+5+5^S]234234C.%+ö2+%<%5|+$2+53=&D.W+L+%W%&+S2+S3WS4EᫀC+᪆ᵫ⚪÷VøAA/,6=ù4ᳫ,ᓃ=úû1%=yt|AG|3,S]=4jr|A4ü,S2=47t-|AB|2,S=47t|AD|2,S=4jt|AC|2,ᙠÉÊK᧕þ6ÿ^+᝞▲+ឤ஺/,ᑣ341ᓃ+2+%=%|44+8|3+஺|3<%[^4||2HG|ᓝ|AB|2.|AG|ᓝ|AO.|AG|=%|AC/=%$+S2+S3=4ᐔ|AAI|2+|AB+|4O|2=4Hef=S4ᦑ⌱C.7r6.᝞ᙠ43C-AjBiGNBCA=90஺ZBAC=60°,AC=4,EA4jḄ""#BEḄ""Hᙠ$%CA&'A|H=3HC,ᑣ$%Ḅ()*A.2+B.4C.V13D.3,ᫀC.+᪆ᵫ⚪2AB=8,3"F4#£>஻AB8A4|9"஺:;ᑣ஺AE",FD=^AB=4,^HC~DA71ᡠ=஺H஻AC,NFDH=NBAC=60°,3-DH4ᵫABCᳮEFH=^/42+32-2X4X3XCOS600=y[l3,ᦑ⌱C.7.2018FG*H┵S-A8CDḄJ☢LMNOP(ᙳRSEL$%AB&Ḅ")TUV"*WSEXBCᡠᡂḄZaSEX[☢ABCQᡠᡂḄZ4☢ZAB—CḄ[☢Z&ᑣ)*

86A.(h&()3B.C.0^0^02D.OzW&Wd,ᫀD.+᪆᝞TeWJ☢MNOḄf(2,EA8&☠k"AḄHSᑖ"E1bABḄ"SᑮJ☢ḄopSO=1,dEE',E1஺sf4tO஺O'EE',ᑣNSEO'=dZSEO=02,ZSE1O=0.3ᵫ⚪2Etan0\——="LLU4___SO__1___2_tan—|}}tand=1,2~tan®2«2C.஺2<஺3D.2>,ᫀA.+᪆ᵫ⚪2WSBC,ASC4Ḅᑖ+জ┵S-ABCḄ஻᧕°>ᵯ1hh᪷MB|ᦪḄCEsinH=7sinct2=77"1஻2ᡠ=sincqvsina?,¤ᑁa2ᙳ┦Zᡠ=aiீot2ᦑ⌱A.9.)2018•FGḕª᪥¬ὃẆ¯ὶ±ὶὃ*᝞MH┵P—A8CDḄᔜ(ᙳRSMLAB&Ḅµ")Tᒹ·V"*NLAOḄ"ᑖ¸☢ZP-MN-C,P-AB-C,¹ºMD—CḄ[☢Za,6,y,ᑣ)*

87pA.y

88ḄopXᑮ"AḄopØÙMÚᦪÛ'µ"#ḄÜÝLÞᱥ$ᑣ☢ZA-BC—஺Ḅ[☢ZḄABà)*ᫀB+᪆ᵫ⚪2µ"#ḄÜÝL="Aᯖ"$BCâ$ḄÞᱥ$W"PᙠJ☢BCDᑁḄ»¼"H,☢ZA-8C—஺Ḅ[☢ZḄᜧ+d"Pᑮ$8CḄopbd,ᑣä=/1,ᵫÞᱥ$ḄCEB4=d,ijsin஺=7=~=2,ᑣcos9=«1—sin%=y/T,ᦑ⌱B.11.2018•FGḕçè᪥é4êὶὃ*ëìíêḄî᝞ᡠïᑣðìíêḄêñ,⊤☢ñ.+᪆ᵫîEðìíê=Lᵫ᝞ᡠTḄMNêABC£-Aj81GoióôõêABC-EBiFöᒕAḄøᑖᐸE,#ᑖAi®,BiGḄ"ᑣᐸêñVABCD-AiBtCiDi-VABC-EB^F=23-|x2X[^|x2X2+-^y|x2X2x|xiXl+|x1Xlj=y.᧕EHfOACFE&JúûJ2᱐[ḄSῪýOᑣìíêḄ⊤☢ñ

89,1,1,1,72+2723A/22X2X2+2X2X2X1+2X2X2+2X2-2XlXl+^ߟL~X-^-=20.12.×H☢êABC஺ḄþÿᑖᓽAB=CD,AC=BO,AD=BC,ᑡজ☢ABCDᚖঝ☢ABCD☢Ḅ☢ঞ☢ABCD⚔!Ḅ"ᩩ$$ᜳ&'(ᜧ*90஺,-*180°ট/0☢ABCD1Ḅ23ᚖ4ᑖ.ᐸ178Ḅ9:;.ᫀঝট+᪆জ<☢ABC஺Ḅ"ᑖ=>4?@☢Ḅ☢&2ᵫ*"ᑖᡠC4?@☢DEF.ᵫ*EFḄᔜ☢HIJD7FKᡠCLI☢MḄ☢&2HIJᚖ,HIJᚖজ┯Oঝ☢A8COḄ☢;ᐰḄ"&K☢;Ḅঝ78ঞᵫঝQR☢ABCDḄ☢;ᐰḄ"&K☢ABCD⚔!Ḅ"ᩩ$$ᜳ&STUVᣚDLI"&KᑁḄ"ᑁ&YZ'(D180°,ঞ┯Oট☢ABC஺Ḅ1ᓽDEF[☢Ḅ1\ᡠC1/2]^EFḄ1\_ᚖ4ᑖট78.13.`R7"aABC—ḄMஹcdEᑖD3-4,eD7,fg7"aḄ@⚔ᙳᙠᳫ஺Ḅᳫ☢M_ᳫ\஺ᙠ7"aABC—ᑁᑣᳫ஺Ḅ⊤☢Dᫀ100n+᪆mD7"aABC-A181GḄMஹcdEᑖD344#,1n7"aḄMஹc☢Ḅ1\ᑖDE,Ei#ᑣ7"aḄeDh=EEi=7,2ᙠMஹc☢Ḅd"&K1஺Qᑖ;8C,BCiḄ1QoAE=]4O=3,AE}]=q£)|=4,ᑣᳫ\0ᙠ2EEIM_uvDR=OA=O4,ᡠCஹ0᮱+32=\0y+42,_஺£+02=7,zo஺E=4,ᡠC<==஺>+32=5,

90ᡠCᳫ஺Ḅ⊤☢DS=47t/?2=1007r.14.᝞ᡠᙠῪ&"&KABC1NCD&BC=2,EF//BC,EF☢AEFᢚ☢AEF4☢EFBC,ᑣEFḄED┵A—CBFEḄᨬᜧᨬᜧD.ᩈ327z+᪆A£=x,00,g(x)Dᦪ2<2g'(x)<0,g(x)Dᦪ.•.=g(x)noᨬᜧᓽ┵A-CBFEḄᨬᜧᨬᜧD.15.`R"A8C-AB|G1/BAC=120஺AB=AC=\,AA^2,f441ᙠ7¡tḄᢗ£☢aᑁ_AB¤ᢗ£☢aᡠᡂ&D¦30஺W9§60஺)7¡Ḅ☢D[¡Ḅ☢D“6©ᓄ᝞?Ḅᨬᜧ;,6=.®ᫀ3-60°z+᪆A8¤ᢗ£☢aᡠᡂ&DJ4☢A8C᝞ᡠ,

91BC=,NCAE=60஺/.BD=ABsin0,DA=ABcos0,A£=ACcos°60°—஺±ED=DA+AE=cos°60°~0+cos6,ᦑ7¡Ḅ☢Dm=EDXAAi=2[cos60°~3+cos0],.,3TWᦈ60஺BDCE,[¡Ḅ☢Dn=BDXA4=2sin0,nm=Asin´cos60°—஺±+cos0\=4sin᜛[cos60°cos6+sinOsin60°+cos0]=sin28+2ssm2e+2sin20=3sin2஺+¶I-cos20=2ᵫsin2஺—30஺±+-30஺46460஺,30஺¸28-30஺¸90஺,-W2-sin°20—3T±W2-.2WnmW3,ᦑ2஺-30஺=90஺ᓽ9=60஺mnnoᨬᜧ33.16.`RᙠD12ᐔḄᙊ1AB,CDᑖ;Mஹc☢$ᩩH4?Ḅvᑣ"┵A-BCDḄḄᨬᜧ*.®ᫀ8z+᪆Mஹc☢ᙊḄᙊ\ᑖDO1,O,ᙊḄuvDr,/0OA,OB,ᵫ`RVḄ¼=ᐔ½,00]=12TT,ᓽJ,00|=12.yABCD=VC-OAB+yD-OAB-•.•஺;C£Ḅ1ᑮ4☢0ABḄ¿À¤஺ᑮ4☢OABḄ¿À,

92Vc-OAB=VD-OAB>ᑣVA-BCD=2VD-OAB>஺ᑮ4☢஺ABḄ¿ÀD/?,ᑣ/zWr,221222•,=2V£>-QA8=qSAQ4B/?=§X/AB-OOr/2=1rOOÓ/7Wqr'OOi=qX12—8,"┵A—BC஺ḄḄᨬᜧD8.17.(2018•ØÙḕaÛ1ÜÝÞ)`RE,Fᑖᙠ7FABC஺-4181cl5Ḅ8ä,CC,M_B]E=2EB,CF=2FG1ᑣæ☢2AO¤EFᡠᡂ&Ḅ7ᑗ*,4☢AEF¤4☢ABCᡠᡂḄè☢&Ḅ7ᑗ*.éᫀ-7ÓὌ33z+᪆C஺Dᙶ᪗îD4,DC,ðᡠᙠḄ2ᑖDxòyòzòôõ᝞ö÷&ᙶ᪗ø7FḄED3,ᑣ᧕o4(3,0,0),0(0,0,0),£(3,3,1),ú0,3,2),ᑣû=(3,0,0),ü=(3,0,-1),ý=(0,3,1),S=(-3,3,2),ᡂ93ᑣcosioVTo10_1ᡠA஺EᡠᡂḄᑗ3VTb-3'10$%☢4EFḄ)ᔣ+n=(x,y,z),ii,AE—Of'3y+z=0,ᑣᵫ1'—3x+3y+2z=0,jt-AF=0,x—\,7z=318=1ᑣ%☢4EFḄ9)ᔣ+஻=(1,-1,3),ᵫ⚪=1%☢ABCḄ9)ᔣ+m=(0,0,1).$%☢AEF%☢ABCᡠᡂḄB☢0,

93ml¸Cz஻__33y/nᑣcosEF=G=*’_¹ᑣsin6="^~,NItan11J2ᡠ%☢AEF%☢ABCᡠᡂḄB☢ḄᑗS.10+7ᑖ⚗7ᦪᑡ1.$TUᦪᑡXYZḄ[஻⚗]S,”`“7=5,$9=27,ᑣ420TefiA.17B.18C.19D.20jᫀBl+᪆ᵫTUᦪᑡḄ["⚗]nopq9f஺r+ḄiSg-2=9a5=27,l1஻5=3,Cl-1—Cl55-3sᵫd=7-52ᡠᵫTUᦪᑡḄt⚗nop1஻20=஻5+15d=3+15Xl=18,ᦑ⌱B.2.$&{nU|0ḄTUᦪᑡXZḄ[”⚗]$3=}~SS,S4ᡂTᦪᑡᑣ2410TefiA.15B.19C.21D.30jᫀBl+᪆$TUᦪᑡX஻“ZḄnUd,ᵫ&=ᡈ13a2=஺l1“2=0ᡈ஺2=3,s&,S,S4ᡂTᦪᑡ2ᡠ£=5]$4,ᡠf2—0஻Ḅᨬ¤fi

94A.14B.15C.16D.17ᫀC*+᪆•••ᦪᑡX”“Z{TUᦪᑡ¡Ḅ[஻⚗]&ᨵᨬ¤,...nU§0,✌⚗©<0,XYi⌴«ᦪᑡ—1,¬49<0,+”9>0ᵫTUᦪᑡḄឋ¯q2a8=஺1+஺15<°஺8+"9=41+”16>0.31+Y)?••5=2¥5„>0nḄᨬ¤16.ᦑ⌱C.«»+1=ᐵµ¶f"eN*i,ᑣ456Tef4.¹qᦪºUXYZ¼½¾=0,)(ᫀAeஹÀa—yl3**+᪆ᵫ⚪=q,%n+1=¤”),ᡠ=0,42=¤Ḅ=¤04=0,஺5=¤"6=¤…ᦑᦪᑡḄᕜÄ3.ᡠ456=418><3+2="2=—V3-ᦑ⌱A.5.ÅqᦪᑡX“”Z4|=1,஺2=2,~%+2—Y=2-2-(-1)","WN>ᑣ$2019Ḅ()A.2018X1011-1B.1010X2019C.2019X1011-1D.1010X2018(ᫀC*+᪆ᵫ⌴Ènop1¥஻᜻ᦪq+2—Ê=4,ᦪᑡXËZḄ᜻ᦪ⚗{✌⚗1,nU4ḄTUᦪᑡ,¥஻Ꮤᦪ&+2Y=0,ᦪᑡXYZḄᏔᦪ⚗{✌⚗2,nU0ḄTUᦪᑡ,$2019=f0+43HF&019i+fa2+”4H”2018i=1010+1x1010X1009X4+1009X2=2019X1011—1.ᦑ⌱C.6.`SiᦪᑡX““iḄ[”⚗]~&=2%2,ᑣ&TefiA.255B.256C.510D.511(ᫀC

95l+᪆¥஻=1ai=Si=2஻i—2,Îp1Ï஻i=2,¥஻22S஻=2a஻-2,S஻-i=2Y]—2,ÐoÑUp1:a=2a—2஻஻[,ᑣ஺”=2஻“],nnÎp1ᦪᑡXYZ{✌⚗2,n2ḄTᦪᑡ2>fi,.••ᦪᑡXᱏZ{✌⚗énêḄTᦪᑡᑣᵫ1+1/22ë1*-]+W+B2àᐙᑖឋᡂìíîïð|ᡂì᝞îòÏóᦪᑡXYZ1,2,3,¼½/+32>2X22,ô|1ᑮXYZTᦪᑡã⌕ឋ|ᡂì.ö÷ᦑ⌱A.8.f2018•øùBᨴὃiû᦮ᦪᦪᑡ1,2,3,4,…ᡠᨵḄý+lfidN*i⚗ᑤ◀!Iᦪᑡ4,ᑣᵯ஺18A.2018B.2062C.2063D.2071!ᫀC#+᪆ᵫ⚪()ᑤ◀Ḅ-45/᦮ᦪ145?+1=2026,ᑣ2027=&027-45=0982'ᑤ◀Ḅ-46/᦮ᦪ146?+1=2117,ᑣ2118=஺2"8-46="2072'ᡠ6“20187ᐳᑤ◀945/᦮ᦪ)ᑣ02018=2018+45=2063,ᦑ⌱C.3*29.>S஻1ᦪᑡḄḄ7஻⚗B)CD3=12a஻+]+3S.=3஻£N,IJK(Ḅ஻£N*ឤᡂN)ᑣOᦪMḄᨬQR1A.2y[2B.[C.TD.4vo12!ᫀC3*#+᪆ᵫ2q஻+]+3S஻=3஻£N,ᑣ2%+3sLi=3஻22.\]^_)`2a+1—2a+3a,=0,nnt

963色1又--一田•=牙/2甲eZsS„=33尸4-5„27⌕iS“+*WMJK(Ḅ஻GN*ឤᡂN.324141᪷nJopᦪḄឋr)sStu)5"+wxᨬᜧR1᧖.•.OᦪMḄᨬQR1✌.10.|}ᦪᑡ஻.CDs2*i—110Ḅ”ḄᨬQR1()A.59B.58C.57D.60!ᫀB#+᪆ᵫ⚪(`sk=1)2°-1<«^2'-1,ᓽ஻=1,ᑣ%=g,ᡠ6Si=s=2)2'-1<«^22-1,ᓽ1<஻W3,nSN*,ᑣa„=1,ᡠ6S3—&=g+3=1s=3)22-1<«<23-1,ᓽ3<”W7,“GN*,333ᑣ஻”=W)ᡠ6S7_53=4Xg=Zs=4)23-1<»<24-1,ᓽ7ீ஻15,஻GN*,ᑣ4"=W)ᡠ6S15$7=84=2s=5)24-|<«<25-1,ᓽ15<>W31,“GN*,ᑣ=,ᡠ6⎃|—S15=16X*=|s=6)25-Kn<26-l,ᓽ31<஻W63,GN*,33ᑣa„-^2,ᡠ6$63-S3i=32X^=3,135---222

97ᙠ-Ḅ2ᑮ-¡3¢)ᑣᨵm⚗ḄB1niX^=~,¤¥>2.5,#¦s)ᡠ6i&>10,”>57,ᡠ6஻ḄᨬQR158,ᦑ⌱B.11.(2018•§¨ḕª᪥¬®ὶὃ)±}%²³´12Ḅ´ᦪᑡ)5஻1ᐸ7஻⚗B)¶஻2+1,%+1)·+1ᡂ¸ᦪᑡ)ᑣ஺1=>s"=)S"ᨵᨬᜧR.!ᫀ1910#+᪆¹1஺2+1)%+1)º+1᪀ᡂ¸ᦪᑡ)ᡠ6(.5+1)2=32+1)3+1))ᓽQi+4X(-2)+1¼=[a]+1X(—2)+l][ai+6X(—2)+1],#“1=19,ᑣSu—nuτH-2~d=—½+20஻)20ᡠ6s஻=(¾/2=1°)&xᨬᜧR.12.|}¸ᦪᑡ¿Ḅ✌⚗²1,³¸13,´ᦪᑡÀḄ✌⚗²5,³´11,Á¢Ḅᔜ⚗ᢥ᝞ÆÇᑣÈÉÊᐭᑮ4.ḄÌ^Í\⚗ÎÏ)᪀ᡂᦪᑡÐ",a,Ñ,263)Ḅ)3)஺5,ᓃ6)஺4,…)ᓽᙠ%B1+1\⚗ÎÏÈÉÊᐭEJ¢n⚗,ᑣC20I8—.(ᵨᦪÕ!)!ᫀ1949#+᪆ᵫ⚪(`)%=3"7,Ö=-5+(஻-l)Xl="-6,ᵫ⚪(`,ᦪᑡТḄ⚗13°,—53,—4,—3,32,—2,—1,0,3ஹ…)3")ᦪᑡ6Ḅ⚗ᦪ11+2+…+Ø+Ù+1)=6+Ú+2),s=62)ÛÜ=2016,ᓽÝᐳᨵ2016⚗)¶-2016⚗13$2,஺2018=81955=1955—6=1949.13.(2018Þᐶàá)|}¸ᦪᑡḄ7n⚗BS஻=3"+r,ᑣḄr=,ᦪᑡâ(஻+4)ãᓣḄᨬᜧ⚗²-k⚗)ᑣk=.!ᫀ194#+᪆¸ᦪᑡ7஻⚗B³]ᐹᨵᱯçS=aqn-a,nÝ`})r=-1,nᑣS஻=3஻1,Ḅ=$3—51=(33—1)—(32—1)=18,Ḅr=19.

98¤è=஻஻+4é,¶b„>0,ᑣê=27ë6஻+5,b3M2+4/?'n,b+\2n2+6n+5,ìn9ᵫí=ᱛ-TT2->1`஻<1஺)b3஻ᓝ4஻n,b+i2n2+6n+5ᵫnð^ñð¾ò`"9nÝ`)ᦪᑡ¢Ḅ⚗CDbsb233Vb4,¶b4>bs>b0b7>ᙽ>…,ᑣk=4.14.|}ᦪᑡ஻஻Ḅ᜻ᦪ⚗ÈÉ᪀ᡂ³´1ᵫḄ´ᦪᑡ)Ꮤᦪ⚗ÈÉ᪀ᡂ³´1ᑘḄ´ᦪᑡᐸ¢4,"21᦮ᦪ)¶JK(஻EN*,öᨵ&<4+1)Iq=1,஺2=2,¶ᦪᑡḄ710⚗B&0=75,ᑣ4=,÷=.!ᫀ311#+᪆¹1஻1=1,67=2,2ᡠ6஻3=1+4)஺4=2+ø,஻5=1+24,JK(஻£N*,öᨵaa,fln]932ᓽ1+4>2,#d\>l;]஻4>Ḅ)12+d2>l+"i,ùᡠ6¾uெ஻5>஺4)[1+24>2+ø)#1+4<û<—1+24.¹15io=75,”,5X45X4ᡠ65X1+”4+5X2+—^—4=75,ᡠ64+ø=6,ᡠ6û=6—4)ᡠ61+4<6—d\<—1+24,77#ü40ù4,ᑘ1᦮ᦪ)ᡠ64=3,ᡠd"2=3.ᡠ6យ=2+4—102=2+3X3=11.15.|}ᦪᑡ஻஻Ḅ7஻⚗B1S,?=p஻2—2஻)஻£N*,¾=JIᦪᑡ2஻²³´12Ḅ´ᦪᑡ)ᑣᦪᑡ1Ḅþ⚗³]1.7*!ᫀយ=3஻#+᪆ᵫS஻=p஻2—2è)`})s஻=1)a1=p-2,

99s,%=Sn—Sn-i=2pn—p—2,a\=p~2ÿᔠᡠḄᙳᨵ*=2pn—p—2,ᑣa+\—a=2pnn9ᦪᑡ஻஻2஻Ḅᦪᑡa=3p-229஻I+2஻27P—6b\=a\=p!2,஺2=]+2=-3-.Ip—6ᑣ82&'=3~~(p_2)=2,31)2P=3,p=ya\=!yᡠᦪᑡយḄ,⚗117a“=—]+(஻-l)X3=3஻-5.16.67ᦪᑡ஻஻Ḅᑠ஻⚗9S஻;஺|=1,==2,஻3஻=2஻&2஺஻Ḅ஻+1=஺஻+1஺3஻+2=%—n,ᑣ஻60='§60=.(ᵨᦪ?@A)Aᫀ52264D+᪆஻3”=2஻-2஺஻஺3”+1=஺஻+1஺3“ᓝ2=G&Hᡠ஺3஻+஺3஻+|+஺3,?+2=஻+1I(஻3+஻4+஺5)+(஻6+஻7+஻8)+~+(஺57+஺58+459)=2+3+~+20=209,Ḅ஻=2஻-2I,஻3"+2=G-஻ᡠយO=஻3X2O=2X20—2஻20'஻20=஺3N6+2=஻6-6,஺6=஺3O2=2*2—2a2—0,I஺2஺=-6,“60=52,QS6o=1+2+209+52=264.17.ᦪᑡGSTU=VG+௃=᧕&G+1(஻eN*),ᑣ:+\+…+——Ḅ᦮ᦪ_ᑖ3ci\az«2017Aᫀ2D+᪆0=,ᓽ+1=*—ᓽ+1(஻eN*),ᡠ஺"+1—a"=(᝞&1/>0,ᡠa.+i>a”,%⌴jᦪᑡ,ᡠG+1—1=a(a-1)>0,nnᡠߟL-r=-4-7--஺஻+]—1a(a—1)a—\annnn

1001—1ᡠ3+9•o]ᡠm=4017=3p018-1'4因为-3ᡠq=0r2—g+l=SḄ=W+i=9U"4=ur2&)+>2,…ᡠ஻2018>஺2017>஻2016">44>2,ᡠ318T>1ᡠw,ᡠ2<3&yᓃ1<3,ImḄ᦮ᦪ_ᑖ2.10+7ᑖ⚗889:i.67|}~ᦪH஻ST“ᑣᑡ&ᡂḄurA.a3>b3B.c^>b2CÀD.log,|«|0,஻>0,¡¢ᓝ1,'ᡂᦪᑡᑣ஺+¤ḄᨬH¦urA.16B.9C.5D.4ᫀA+᪆§ᡂᦪᑡ

101au•"+¤=¨+9c+3=1஺+£+«/10+2ஹ%=16,\]ba®¢¯®°ᧇ+»I,4ᓽa=4,ᓃ=g´ᡂ.3.(2018•µ¶·¸¹º»¼)½¾¿x,yST|x|+|y|Wl,ᑣx+2yḄᨬᜧ¦9ᨬH¦ᑖÃ()A.19—1B.2,—2C.1,-2D.2,-1AᫀBD+᪆ᙠÅ☢ÇÈᙶ᪗ËᑁÍÎ|x|+|y|Wl⊤ÐḄÅ☢ÑÒ(Óᶍ),ᐸ(1,0),(0,1),(-1,0),(0,—1)⚔×ḄØÙÑÒ(ᒹÛÜÝ)᧕)®Þ᪗ßᦪz=x+2yáâÅ☢ÑÒᑁḄ×(0,1)Þ᪗ßᦪz=x+2yã)ᨬᜧ¦Zmax=0+2Xl=2\®Þ᪗ßᦪz=x+2yáâÅ☢ÑÒᑁḄ×(0,—1)Þ᪗ßᦪz=x+2yã)ᨬH¦2m=0+2X(—1)=—2,ᦑ⌱B.m2—y20,x+y-3W0,4.(2018•å¸ஹ⊞¸ஹçèéᙢëìí)67~ᦪx,yST<ᑣ|x—3y|ḄᨬxGN,jGN,ᜧ¦()A.3B.5C.7D.9AᫀBD+᪆ÍÎð⊤ÐḄÅ☢ÑÒ᝞Ó¹▢ò_ᑖ(ÛÜÝ)¹Ḅ᦮ᦪ×ᡠÐ,®x>3yᵫÓ7Þ᪗ßᦪz=x-3yáâ×8(3,0)ã)ᨬᜧ¦ᓽZmax=3;®x<3yᵫÓ7Þ᪗ßᦪz=3y—xáâ×4(1,2)ã)ᨬᜧ¦ᓽZm”=5.Qᡠõ|x-3y|Ḅᨬᜧ¦5,ᦑ⌱B.

102ö1,5.u2018÷ᐶìír67~ᦪSTùW2x—1,᝞úÞ᪗ßᦪz=x—yḄᨬH¦&1,1x+yW”?,ᑣ~ᦪHûurA.7B.5C.4D.1ᫀB+᪆üᑴð⊤ÐḄÅ☢ÑÒ᝞Ó▢ò_ᑖᡠÐuÛÜÝr,y=2x—1,ὶÇÿy——x+m,ᙶ᪗A12m§1,m-j-127%—1ᵫ᪗ᦪḄ᪗ᦪᙠAᜐᨬ!"ᨵ$%%&%=%1,()=5.ᦑ⌱B.,x-y'0,6.56ᦪx,y789:ᩩ<,x+2W4,᝞B᪗ᦪz=x+“yḄᨬᜧFᑣ6ஹI%2W2,ᦪaḄA.3B.-y1411C.3ᡈD.3ᡈ%NᫀD+᪆ᐜPQRឋ9:ᩩ<ᡠ⊤VḄNW᪗ᦪᓄY=%Z+[[஺]0^%_•aaa<0,

103汇4>>1=一-\2I/(1)[%c%!<0,ᓽ஺22^ᨬf(444Z=--4=1633+■3gᔠ⚪;(2)[%(v—3ᓽ0<஻<2^ᨬf(8(3,c)z=3+5=o஻=ᕈqgᔠrsc[“<0^%:>0.(3)[0<%ᓽ2^ᨬf(C(—2,—2),z=-2—2“=va=—,gᔠc(4)[%x2cᓽ%2Wa<0^ᨬf(8(3,c),z=3+_a=F஻=oqgᔠrs.yz6ᦪ஺Ḅ3ᡈ%vᦑ⌱D.111Q7.|}ᦪa,~78H/=1,ᑣ%4+;•Ḅᨬ()aba~1b~\A.1B.6C.9D.16ᫀB(+᪆•••}ᦪa,~785+5=1.\h=a.>0,(஻>1.ᳮh>l.a—122d9(a-l).y=614[[9(஺-1)=ᓽ஻=^vᡂ.19%7ᓝY$Ḅᨬ6.ᦑ⌱B.a~1b~18.5}6ᦪa,b,c78a*12—3ab+4b2—c=0y[ᨬ^a+b-cḄᨬᜧ()331A.2B.TC.gD.jᫀc

104+᪆}6ᦪa,b,c78a—஻஻+4Z?~—•^2,ᡠ§X—2y>0.f+4y2(x-2y)2+4¡,4o---=x-2y+----^4,x-2yx~2y-----------x~2y[[Z=5+1,y=*2’1^vᡂ•ᦑ⌱A.10.5b20,a2+b2=lᑣH+aḄᨬᜧ()f®¯3y/3°/A.4D•42JLx•2ᫀA+᪆ᵫ⚪᪀⌼_0a<1,y>0,b2+xa2^2\[xab,(1—x)a2+y^2y/(]—x)ya,=1,ᓽµ=qஹ^a2+b2+-^^2^ab+a),[[«“%1%Y^vᡂ·¦[b=y[xa/+/=],ᡠ§¸c,¹ºa2+h2+^=^^(ab+a),ᦑab+a^r-^,[[”=ᙶ,^“="ᦑ⌱A.

105x20,11.(2018½¾¿ὃ〉ÂឋÃÄ)|6ᦪx,y789:ᩩ0,

1061%x)=-2%+sinx=—J(x),ᡠ§ᦪ*x)ᓫÿ⌴Ḅ᜻ᦪ,ᵫ஻)+428-1)=0,஻)=/(28ߟ1)=/(]_2ᡠ஻=1—2a+2b=1,4£>i-20-9++匕+-29+2]ᧅ=9+4ᖾ,b=pa!.14.#$%ᦪx,y&'x+2y=5,ᑣᓟ*+,1Ḅᨬᜧ01.2ᫀ345f—32/1(X+1)2-2(X+1)-216+᪆A-+1+y-x+1+28=x+l—2+2y—9+?=x+2yT-◀7+᝞+1+2ᔊ=4->+2+ᵫ+?)61x+1y)1oW4-14+2Ḅ=],3x=2,y=]!ᡂB.15.(2018•“EFᐰ>H”JKḕὶὃ)OPx,y,zeR,x2+y2+z2=4ᑣxz+yzḄᨬᜧf01;#x+y+z=0,ᑣzḄᨬᜧ01.2ᫀ2?R6+᪆xz+yz=⁠GrTz+2y.Tz)ᧁ/+V+/+᝞=2Wx=y=Tz!Vx2+y2=4—z2,x+y=Zz,ᑣ(x+y)2=4—Z2+2A^^4—Z2+/ஹ"),

107ᓽz?W8-2z1ᑣzḄᨬᜧ01`x=y!.16.dx,yᙳf$ᦪ:+hijᑣxyḄᨬk0f______mx+yḄᨬk0f'x-r12yᓝ12,9/-32ᫀ|2?+1M4se41I]x+2y+216+᪆fv+w7=Q+l)(2y+l)=E'ᓄ~2xy=x+2y+3,12=x+2y+3N2ᖾH+3,៎E=f,ᑣ-22/+3,f>0,6w3,ᑣᑮ9x=2y=3ᨵᨬk0/.x+3J2ᵫ2xy=x+2y+3,)2(x—i)2x—rf)>0,ᡠX—1>0,Ion□Qᑣx+y=x+]+^7Y=x-l+^Y+E>2/x-l=mYᓽx=l+?x+yᨬk02ᔾ+/17.d%ᦪx>0,y>0&'x+ᑣ+k++ឤᡂBḄkḄᨬᜧ0f.2ᫀ22+k6+᪆d:m=3,x=m+t,y=஻?f,0Wf<«2,ᡠ(*+0()+0£(¤+¥ឤᡂB=(஻?+-¦:§Á(¨+J2ឤᡂBo--ឤᡂBorn—^m—1_2"ft?ஹ஺)min./Z/4—4A7?2—1fOWtீ᪷ᡠ(*)min=0,ᡠ----£2----W0,ᡠ/W2+kᡠdk=2m&2y/2+,ᡠkḄᨬᜧ0f242+k.

10810+7ᑖ⚗9ᙊ┵=>1.d±ᙊC³´+µ=1Ḅ¶ᯖ¸fF,¹º/³y=»¼W0)½±ᙊC¾A,8¿¸ᑣÀAEBᕜÂḄ0Ä1()A.(2,4)B.(6,4+2k)C.(6,8)D.(8,12)2ᫀC6+᪆᪷űᙊÆÇឋḄᕜÂf\AF]+\AF'\+\AB\=2a+\AB\=4+\AB\(F'fÉᯖ¸)4ᵫ´+)?=1,*4=]+41'r—^I]+FÊ=˨2|ÌÍÎᵬp=4\1/77^(2,4)(20),ᓽÀAEBᕜÂḄ0Ä1(4+2,4+4)=(6,8).2.OPÌк£=1(“>0)¿ᯖ¸ÑÒḄÓÔf4,ᑣÌкḄÕÖº×Ø1()2ᫀA26+᪆ᵫÌк᜛y2=l(°>0)Ḅ¿ᯖ¸ÑÒḄÓÔf4,Ú2c=4,ᡠc=2,ᵫ02=/+Ûᓽ/+1=22,6஻=kᡠÌкḄÕÖº×Øf>=±1=±ᓩÞ3.dßᱥºy2=4xá¸Pᑮ)âḄÓÔfᑮ¹º/³3x+4)+12=0ḄÓÔf4ᑣ4+ᑘḄᨬk0f()A.2B.!C.!D.32ᫀA

109y=4x,6+᪆ᵫজ.3x+4y+12=0,3y2+16ä+48=0,1=256—12X48<0,ᦑজè6,ᡠ¹º3é+4ä+12=0½ßᱥº1êÔḄ.ᵫ4+d2=d|+1+32-1’í4+1fᑮ=1ḄÓÔ,ᦑ4+1fᑮᯖ¸ï1,0äḄÓÔ,|1X3+OX4+12|ðí4+1+4Ḅᨬk0fᯖ¸ᑮ¹º3x+4y+12=0ḄÓÔ—3,ᦑ4+ᑘḄᨬk0f2.4.OPßᱥºä2=4xḄᯖ¸fñFfᙊ»Ḅᙊ½ßᱥº¾M,N¿¸½ßᱥºḄP,஺¿¸#ö÷øMNPQfùøᑣùøMNP஺Ḅ☢û1ïäA.B.12kC.4kD.3ᫀA+᪆᪷⚪MNP஺|PQ|=|MN|,ᑮᙊ!"ᑮ#$Ḅ&'(ᑮMNḄ&')*+Ḅᡠ-M.Ḅ/ᙶ᪗3,2ᐭ4ᱥ$678Mx:;6Ḅ<.=M>3,2@AN>3,-2^3A,ᡠ-|DE=4/|NP|=4,=MNPQḄ☢I5=4X44=14225.KLMN$CP᜛RS=1>4>0,b>0AḄXஹZᯖ.ᑖ]Q,F,-஺&_`ḄᙊM2(MN$C*AA5+3lmn+#A.2B*23ᖾ+#36+2#C2D.2ᫀC+᪆᪷⚪ᨵIAMu1=v7TwAQ(ᙊM*ᑗᡠ-/F|AM=2,

110ᡠ-ᵫz{|ᳮ|4~|=ᖾ஺ᡠ-cosZFMA}ᡠ-cosNAM"2=R,▬"ᵫ|ᳮ=“2|=++2⚶>R9⁠,1”2c2c3yli+Âᡠ-FQ|T2226.KLMN$R6=1>“>0,8>0AḄXஹZcᯖ.ᑖ]Q,F,-$"2_`Ḅ2ᙊ(MN$Ḅ$ᙠR▲Ḅ<.M,g▬"||R"21=26,MN$Ḅ'!᳛e,ᑣe?+a>AA.2B.3,3+2&ᫀD+᪆-$"ᔊ_`ḄᙊḄ67@+"=02,MN$¡R▲Ḅ$67y=1,x2+y2=c2,ὶ¤67>b=ᔊ>a,b,y=-x,1/aw\MF\I-\MF^=2b<2c,22ᡠ-M>a,bAᙠMN$SR᜛=l>4>0,Z?>0A±,b2I/஺2_஻2ᡠ-/R7=1ᡠ-/ª/R7-=1ᓄ¬4-/-1=0,ᵫ=᪷®¯e2=°±>²³´µA.7.KL."ᙠ4ᱥ$¶=·;.஺ᙠᙊ>x+A2+0,-4A2=1;ᑣIPQIḄᨬ@³>A.3^/5,_3^3,A.2—-1B.2~~1C.2@R1D.VTO-IᫀA

111+᪆84ᱥ$;.Ḅᙶ᪗">D2,mA.ᙊ!>R4A(4ᱥ$;Ḅ.Ḅ&'Ḅº6#=+,2+>m-4A2=tn+2m2—8"?+¼.½¾¿A=D1+27%2-8Á+Âᑣ/OmT=4Om—1TOm2+/n+2A,ᵫÄÅᦪ(fÅᦪḄᐵÈÅᦪᙠÉÊ>0,1A;ᓫÌ⌴ÎᙠÉÊ>1,+8A;ᓫÌ⌴ÏÅᦪḄᨬ@³Ð1A=ÑᵫÒÓᐵÈIPQIḄᨬ@³'Õߟ1=×-1.8.KL4ᱥ$CPy2=2px>p>0A,ᙊMPOx-^T2+y2^p2,_$/PÙª4R-Ú#஺AÛ;ÜÝÞ(;ßcN$AAAB.2C.pD.gPP"2ᫀB+᪆ᙊMP>1A2+Ù2=ä2Ḅᙊ!4ᱥ$Ḅᯖ.å0A,æ`p._$/PA=^R?¡4ᱥ$Ḅᯖ.⌼0A.842>X1,yiAA£X2"A.Âë8&<0,ᑣX©,%2>2.|A1A2I=î1FI-khFI=p—=g-xi,IA3A4I=kUW—|A3g=(^2+gߟp=X2—§(y2=2px,ïð(ᙈ,fc2x2—+2)x+-4=0,ᡠ-c+õ="",2),X]M=?.1_1ᡠ-IcRøùK£2~x\^2—2xi+x-p2pp2(X|+X2)Rú·2—4

112=2Pஹ.,P&+2>?2_22஻2-Fߟ4~49.KL4ᱥ$CPy2=2px(p>0),¡ᐸᯖ.FḄ_$/<4ᱥ$aA,8c.gü=3ý4ᱥ$C;þᙠ.M(x:;R.N(7,0)ᐵa_$/ÿᑣᱥḄᯖᑮḄ()A.4B.5CD.6ᫀD+᪆ᱥ=22#?>0)Ḅ/')x=+$᝞.ᡠ012A8Ḅ456┦689A,8;,BQLI',ᚖ=ᑖ?P,Q,9B;BDVAPAAPBD,ᑣ|AP|=|A/q,\BQ\=\BF],•Q\AF]^3\BF\^AB\,Q.\AP\-\BQ\=\AD\=\AF\~\BF]=^AB\,ᙠRlAABDHᵫ|A£>|=3A8|,LMNBAO=60஺Q஻xSQ.ZBAD=ZAFx=6(i°,**,60஺=^^2/ḄVWQXcZM(X,y),MM

113[ᐭᱥḄVWᓄ^LM3P2—4஻-84=0,M᜛=6(bcde),ᦑᱥḄᯖᑮḄ6.10.hijQ2klᙊnopḄqᐳᯖPkstḄ+uqᐳv/QPF2=?ᑣlᙊnopḄy᳛{|ḄᨬXc()A.1B.~C.1D.^2ᫀB+᪆ZlᙊnopḄy᳛ᑖ?6e2,ZlᙊḄS3,opḄSᯖc,P+▲ᑁḄqᐳ||+|QQ2|=20ᑣெIPQI+|QQ2Q2஺2M|PFil=ai+42|PBI=ai+ᡠ4c2=(aτ+a)2+(«τ—«2)2—2(aτ+«2)(«I—«2)-cos2ᡠ4c2=(2—6)+(2+g)ᡠd4=Ã+Ä®X^=Å,ᡠḄ⁐hᙶᦑ⌱B.11.hiVW2+(2—஻?))2=1⊤0opᑣ஻?Ḅc.⊤0lᙊᑣḄc.ᫀ(+8,0)0(2,+8)(0,l)U(l,2)+᪆mX1+(2—m)y2=1⊤0opᑣ(2—m)<0,Mm<0ᡈm>2./n>0,᝞?+(2—m)y2=l⊤0lᙊ,ᑣ<2+/y0,”#2+஻?,

114Mᡈ\

115“0+2"2=0,ᡠ222[1+25—ᓃ2=0,0=5,W—5,AE0,1[b=~5'ᡠ=-1.16.2018•ḕ᪥Ẇὶ"ὶὃ$%&ᱥ(CF'2=2pQEoḄᯖ+,F.-ᯖ+Ḅ.(/0&ᱥ(C1M,NÇ1PbMNḄ,ᑣ.(OPḄ3᳛Ḅᨬᜧ7,.Éᫀ9+᪆;.(/Ḅ3᳛<ᙠ>+P?ᯖ+ᔆAᔠC>DE=0;;.(/Ḅ3᳛<ᙠ>G.(/ḄHI,%#0,?&ᱥ(HIὶJKy᦮ᳮFx2—Pp+2px+N஺f,&+2PᱥᓝQP,ᑣËXM.XN=AEᑣR+S==4᝞+XN-p=%1U+VW2kᑣKOPI=᮱+2XM+XN;Z[;᝕=]>^_ᡂ,ᡠ`PḄᨬᜧ7,a.vZvZI17.2018•ᗩᐶdஹfgdᦟijkVlᙊ7+n=1“Eᓃo0,.(pqr.(/Fy2=%,P,lᙊstu+-PvPM஻/1Z?.(/201+M,vPN஻/2Z?601+N,w|2x2+yS2,z7ᑣlᙊḄ{|᳛,.}ᫀᙶ+᪆G|2+=o0,,RWON,,

116ᡠ|R+'2=|0S2+|02=+£)=£,=+=[1+ᜐ12^1-12),X=X\+ᡠ“11y=2Xi~2X2fQᑣx2+4y2=2(%1+X2)=5/(/>0),CHI,lᙊHIᓽ5+1=1,or%r55St_2tIZ1;£ᑣlᙊḄ{|᳛8r-2-~510+7ᑖ⚗10-ᦪḄ@A%ឋC1.¥%¦ᦪX,y©ª(})<&)',ᑣ®ᑡᐵ±²³ឤᡂḄµ()A.tanx>tanyB.ln(x2+2)>ln(y2+1)C.->-D.?>/xy-}ᫀD+᪆(iN©"o''᜜Å1A,;x=Æy=Ç>©ªx>y,Ètanx>tanyᡂ.Å1B,wln(f+2)>ln(y2+1),ᑣ^Ê1f+1>/ᡂ;Ë=],>=—2>©ªx>y,Èf+lு/ᡂ.Å1C,;x=3,y=2>©ªx>y,Èᡂ.Å1D,;x>y>ឤᡂ.fx2—x,x20,2.¥%ÏᦪÐx)=µ᜻Ïᦪᑣg(/(-2))Ḅ7,()lg(x),x<0A.0B.—1C.12D.—4}ᫀcx2—x,x20,+᪆•Ïᦪyu)=µ᜻Ïᦪ,g(x),x<0

117.\/-2)=-^2)=-(4-2)=-2,gSÖߟ2))=g(_2)=/(_2)=_2.e*+l3.ÏᦪC=ᐵ×:(ᐸ³e,ÚᯠÅᦪḄÜᦪ)ḄÝÞᜧß,()àeL)+᪆4—X)=(_Ö)(2-1)ex+l_ex+l=(-x)(1—e,=x(e*—1)=**)ᡠ7U),ᏔÏᦪÝÞᐵ1yâÅã;x-0>y(x)f+8,ᦑ⌱A.4.¥%x),zæᙠRsᕜè,2Ḅ᜻Ïᦪ;lWx<0>²x)=x(ᑖ+1),wê)=1,ᑣ஺^1()14A.6B.4C.-25D.—6}ᫀA+᪆,x)µᕜè,2Ḅ᜻Ïᦪ,ᡠ/(})=/(3=—/(஺=6.[1—1%+1|,x<\,5.¥%Ïᦪ/(x)=2,ஹᑣÏᦪg(x)=2%x)-2Ḅë+ìᦪ,()[x—4/+2,A.1B.2C.3D.4}ᫀB

1181-|x+l|,x<\,2+᪆íîÏᦪyuV=-2,eḄÝÞ᝞Ý’ᵫ)=23-2=0ò᜜)=ó,1—|x+1|,x<\,2,M?Ïᦪù=ᵫ=2úḄÝÞḄ0+Ḅìᦪô⚪•ûᑣô⚪ᓄ,Ïᦪ«rV2>A-Iü,“1ᔠÝÞòýîþÏᦪÝÞḄ0+ÿᨵᦑ⌱B.(x~a)2—1,xWl,6.ᦪyu=ᐔvUឤᡂᑣ!ᦪ஺Ḅ#$&'(Inx,x>\,A.[1,2]B.[0,2]C.U+°°)D.[2,+8)4ᫀA(x—a)?-1,6+᪆fl,x)=Inx,x>l,>ឤᡂᑣ?1@?xḄᨬB$ᵫDEᦪឋGHIJKᵫᑖMᦪឋGH(1—஺2—IWln1,ᓽH0W“W2,QRSH1WaW2,ᦑ⌱A.7.UVWXᙠRRḄᦪ;(xᙠ[1,+8Rᓫ]⌴_`Ar+1@Ꮤᦪcdeef+2ghi1IjkḄxd[—10]ឤᡂᑣ!ᦪfḄ#$&@(A.(—°°>~4]U[2,+°0B.[-4,2]C.(-8,-3]U[1,+oo)D.[-3,I]4ᫀD6+᪆q'/U+1@Ꮤᦪᡠtᜧ-x+l=/U+l,ᑣᦪ./UḄvwᐵyz{X=1IJᵫ>f+2}>x—1Ijk1,0]ឤᡂH|(»1+2—1|(h-1i1|IjkxWឤᡂ,ᡠtW+1IW2,6Hi3W-W1.ᦑ⌱D.

1198.Vᦪ/W40+1=:7ஹx£01ᐔ0=ᙠ(—11R./U)—nu—m=0ᨵcḄ!᪷ᑣ!ᦪ஻?Ḅ#$&@()A.0,J)B.+0°jC.0,§D.(0,I4ᫀD6+᪆xG(-l,0x+lG(0,l,11___X1x)=/(x+l)—=—1=i’ᙠiᙶ᪗ᑁ¡y=7(x),y=஻tr+mḄvw᝞v¤z{y=nvc+m¥W¦(i1,0),¥¦(1,1)§᳛f==ᵫvwSVvwᨵcḄ©¦ª«g(x)=/a)i3ifᨵcḄ¦.9.WX¯᝞°ᦪᜧh)Ḅ±ᦪ'/পᙠভ´Rµᙠ¶ᑍ2(஺4142<6),¹H/(R)=º»¼f'஺2)=º»ᑣJM)'½´RḄ“¾¿$ᦪ”.UVᦪg(X)=/3—Á2@0,2RḄ¾¿$ᦪ”ᑣ!ᦪfḄ#$&@()஺,Â+°°)D.R4ᫀB6+᪆ᵫ⚪kSVg(X)=$3iᑖ2,•:g'(x)=fiÈrᙠ0,2Rµᙠ'X2(0

120J=(—m)2—4^/H-T)>0,00,44—2f+f—¥>0,VJ6H᝞xfᑣ!ᦪ஻Ḅ#$&@ÐI)10.Vᦪy=/(x)'RRḄᏔᦪ`ex+2)=-/U),xG[01)y(x)=l—f.Ñ¡ÒᑡÔÕ⚪¯m¯70)=0¯pr.2@ᦪÖ×)ḄiᕜÙÉP3¯ᦪy=/(x—1)ᙠ(1,2)Rᓫ]⌴Û¯P4¯ᦪÜ=ÝÞ-1)ḄÛ'ß&i=2A+É,jtez.ᐸ¿äÕ⚪'()A.P\,P2B.P2,P3C.pi,paD.p,P424ᫀC6+᪆Xx+2)=iM)¿åx=-1SHæ1)=iç-1)=iç1),èéSHyu)=o,Õ⚪piìíÉᵫ⚪kSV7(x+4)=-J(x+2)=/(x),ᑣᦪᐔ0ḄᕜÙ'7=4,ᑣᦪy=/g)ḄiᕜÙ'8,Õ⚪P2┯ïÉᵫ7U+2)=-/(x)SVᦪᐔv)ᐵy¦(1,0)¿ðIJñᑴᦪvw᝞vᡠó.ôᦪvwᔣö÷ø1ᓫùúûSHᦪy=/U-l)Ḅvw,ᑣᦪy=/(x—1)ᙠ(1,2)Rᓫ]⌴_Õ⚪03┯ïÉP4ᦪy=/(2jr-l)ḄÛ¯4k~2^2x~1W4k(kGZ),

121ý6cdeþSHÛ'12ᦇ52ᦇ+kGZ,⚪஻4.⚪বP4.11.(2018ὶὃ)ᦪ஺#$2"=3,)Ua=,log12-log6=.(ᵨ஺33⊤3)4ᫀlog326+᪆ᵫ2"=3a=log23,ᑣlog312—Iog36=log3(2><6)—Iog36=log32+log36—log36=1_1log23-12-?@Aᦪ©CDE஺ᑣ■<))=——‘AᦪHᓻ)ḄKLM4ᫀ12,0N6+᪆O/Q)=k>g3£=-1,ᡠU/&(§)=X-1)=(-1)2+2X(-1)=-1.ᵫZx)=o,\x>0]log3%=0,x=1_\xWO]x2+Zr=O,x=0ᡈ2,6x=—2,0,1.13.(2018•fgḕij⊞ᓝE᪥ὶὃ)no)ᏔAᦪ\x20]ᓻ)=x(l-x),ᑣ\x<0]40=;rs(5tx)—l)(/(x)+5)=0Ḅ᪷vᦪ.4ᫀx(x+l)66+᪆\x<0]-x>0,ᑣᵫᏔAᦪḄឋx/(x)=X-x)=-x[l-(-x)]=-x(jc+l).ᵫ(5_(x)-l)(Ax)+5)=0ᐔ0=]ᡈᐔv)=-5,ᑣrs(5*x)—1)(/U)+5)=OḄ᪷Aᦪ,*x)y=*>=—5ḄLḄᙶ᪗ᙠ☢ᙶ᪗ᑁAᦪ40Ḅ᝞ᡠ3ᑣLḄvᦪ6,ᡠUrsḄ᪷vᦪ6.14.?@Aᦪy(x)=x|x-“|,n”=3,ᑣ«x)ᙠ1,2ḄᨬᜧM_nAx)ᙠ1,21Ḅᨬᜧ2),ᑣaḄM.9(514ᫀ4(-8,wu4,+8)

1226+᪆\஺=3]ᙠ¤,2Aᦪ/U)=x|x—3|=-f+3xḄᨬᜧM/,G)=*OD£1,2,ᑣᐔ0=§U|>0ឤᡂª.O«1)(¬2),ᓽ|1-3®2|2—ᑣᡈᵫ¯)=஺°=0ᡈx=a9\3Wa<4]40ᙠ2)ᓫ²⌴´µ¶ᔠ⚪¸_\]4x)ᙠ(1,2)ᓫ²⌴¹ᑣ9)º=42);\&WI]»X)ᙠ(1,2)ᓫ²⌴¹,ᑣ1X)max=A2);\lO)Á¸ᦪf,ᙠ1,t+1ÄÅᙠÆᦪᑴÈÉÊR)-/(X2)Ir8ᡂªᑣᦪaḄᨬ§.4ᫀ86+᪆>(x)=a(x+vË+14Ì(a>0),ᵫ⚪@ÍÎ⚪UÏÐÑÁ¸ÒᜐÈᜐ=2,Aᦪ4x)ᙠಘÕḄᨬᜧᨬ§Ö×ᜧÑÏÑ8,µØ8(Ù)=U2+14ÚᑣÍÎ⚪ÛᓄÁ¸fGR,g(x)ᙠt,t+2ᨬᜧᨬ§Ö×ᜧÑÏÑ8,জ\]g(x)ᙠt,t+2ᓫ²⌴¹ßàg(x)max-g(X)min=g(f+2)-g«)="(t+2)2-t2>8,ᓽa(4f+4)28Áf20ឤᡂªßà4ã8,Ì2Tঝ\f+2W0]g(X)ᙠt,t+2ᓫ²⌴´ßàg(X)max-g(X)min=gå-g«+2)28Á¸fW—2ឤᡂªᓽ஻(4f—4)28Á¸fW—2ឤᡂªßàa(8—4)28,஺22_ঞ\0W/+K1]g(x)ᙠè0ᓫ²⌴´,ᙠ0,t+2ᓫ²⌴¹½g(1+2)2gåßàg(*)max—ga)min=gQ+2)—g(0)=a(t+2)2é8ÁѸ-1Wf<0ឤᡂªßàᨵ஺28_টìᳮ\1V+1W0]èᨵ@஺é8,ᓽᦪ4Ḅᨬ§&416.(2018•fgḕï᪥ðñὃẆóὶôὶὃ)?@Aᦪ./U)=|x-a|+1+a,n\xd1,4]7(x)W5ឤᡂªᑣᦪ஺ḄM.4ᫀ(8,1446+᪆\]fix)=x—a+-+a=x+-,

123ᵫÎ1,4],᧕@4(/U)W5,¶ᔠ⚪¸;\l5,ù]µ¶ᔠ⚪¸_44\]J(x)=a—x+^+a=2a—x+-,4ù]X1)=r1+1=3+2஻211,ù]µ¶ᔠ⚪¸.ᡠZᦪ஺Ḅ(-8,1].pc2,xNO,17.(2018•fgḕ⊞Eüýþ)?@o)=2g(x)=/a)+|x+a|,nÅᙠÆÿ[—X,x<0,ᵫ)=)ᑣᦪaḄ.ᫀ(-8,{I+᪆ᵫᙠᵨg(Xl)=g(X2)%ᦪg(x)ᙠR'()ᓫ+%ᦪ.f+x+a,20,ᵫ⚪/0஻202g(x)=<—f+x+a,—஺4<(),ஹ7f-X—4,X974,:2᧕%ᦪg(x)ᙠ(-m+8)'ᓫ+⌴?ᑣ⌕%ᦪg(x)ᙠR'()ᓫ+%ᦪᑣᨵ_2><(_1)<7«<1,ᡠF+x+a,a,x-஻0Wx<—a,(—x2—x—tz,x<0,:2᧕%ᦪg(x)ᙠ(78,0)'()ᓫ+%ᦪᡠ஻<0ឤᡂM.N'ᡠOᦪ4Ḅ(78,

12410+7ᑖ⚗11-ᦪ%Dᦪ1.PQ%ᦪ/(x)=log,ᡝḄU%ᦪ/(x),VA=7'(a),B=y(a+C=f(a+1)ᑣ()A.A>B>CB.A>OBC.B>A>CD.OB>AᫀD+᪆]ᑴ%ᦪ)=1ᕮ`(஺<“<1)Ḅbc᝞bᡠefM(a,log„a),N(a+1,log“(a+l)),ᵫ⚪/hQA=f3)%ᦪᙠjMᜐᑗnḄo᳛C=/(஻+1)%ᦪᙠjNᜐᑗnḄo᳛8=s஺+1)—")=uvwxynMNḄo᳛ᵫᦪz{ᔠhOB>A.2.PQ%ᦪᐔv)=(f-2x)e*-Hnx(aGR)ᙠ(0,+8)'ᓫ+⌴?ᑣḄᨬᜧ)()ae22A.-eB.eC.7D.4e~ᫀA+᪆%ᦪ4r)=(x2—2x)e*-Hnx(aSR),ᡠ(x)=eஹ(x2—2x)+e*(2x-2)—f=eV-2)-^U>0).%ᦪᐔv)=(f—2x)e*—41nx(aGR)ᙠ(0,+8)'ᓫ+⌴?ᡠ/(x)=e"(-2)—᝞0ᙠ(0,+8)'ឤᡂMᓽ2)ᙠ(0,+~)±ឤᡂMᓽ72r)ᙠ(0,+8)'ឤᡂM,h(x)=ex(x3—2x),x>0,ᑣ

125h'(x)=e'(x3—2x)+eA(3x2—2)=ev(x3-2x+3?-2)=ex(x—1)(f+4x+2),x>0,x£(0,+°°),ᡠf+4x+2>0.eA>0,hf(x)>0,hx>l,஻'(x)<0,h0avl.ᡠ%ᦪ஺)ᙠ(1,+8)'ᓫ+⌴?ᙠ(0,1)'ᓫ+⌴.ᡠMx)in=A(l)=e,(l—2)=e.mᡠ஺ீ7e.ᡠ஺Ḅᨬᜧ)7e.3.PQ%ᦪ/(x)e'+x,ᙠᦪ(¡஻)W2"27"ᡂMᑣᦪ”Ḅ()A.(-8,—|U[1,+°o)C.(-8,0]u[g,+8)D.(-8,—iu[o,+oo)ᫀA+᪆§%ᦪ¨Uhx©f(1)প=/প+Ḅ)—1,.•.¬0)=J^^=l,|,(1)—e,Xx)=e*+/x--x,f(x)=e*+x—1,®g(x)=/(x),ᑣg(x)=e*+l>0,•••%ᦪr(X)ᓫ+⌴?¯/(o)=o,...0x<02f(x)<0,/)ᓫ+⌴°0x>02f(x)>0,ᓫ+⌴?.ᦑᐔ²³=´0)=1ᵫᙠឋḄᩩ·hᐵ¹ᦪ஻Ḅ(¡2/7஻21,8,—1U[l,+°o).

1264.jP)ºny=^2—21nx'»/7jᑣjPᑮyny=x—Ḅ½¾Ḅᨬ¿()A.ÀB.ÁC.ÂD.¿ᫀC+᪆jP)ºny=2X2—2

127x'»/7jᡠ0ºnᙠjPḄᑗnÃyn)=X-IÁÄ2jÅᑮyny=x—IḄ½¾ᨬ¿yny5?2=x—ÆḄo᳛1,ᵫy'=3x—1=1,x=lᡈÈ=7É(Ê).ᡠºnÃynḄᑗjPo(l,I).,357273ÀjPᑮyny=Ë7|Ḅ½¾ᨬ¿)VF+?—2,ᦑ⌱C.5.PQ/(x))%ᦪᐔv)ḄU%ᦪf§»/ḄᦪxÍᨵ/(x)=eX(2x-2)+Ar)(e)vᯠ§ᦪḄÏᦪ)Ð0)=1¬4()A.´Ñ)=F஺+1)B.«r)=eX(x—1)C.Xx)=e'(x+1)2D.y(x)=e'(x-l)2ᫀD+᪆G(x)ÒÓ“(ஹf(x)7Xx)ஹ,ᑣG(A)—v—2r—2,eh®G(x)=f—2x+c,VG(O)=XO)=1,c=l,AG(X)=X2-2X+1.=(x2—2x+l)e'=eA(x—I)2.6.%ᦪᐔv)=©73x—I,§¹—3,2'Ḅ»/x”X2,Íᨵl/Ui)—/U2)|Wf,ᑣᦪ/Ḅᨬ¿)()A.20B.18C.3D.0ᫀA+᪆§¹—3,2'Ḅ»/X1X2,Íᨵl/Ui)—Ô¹§-3,2'Ḅ»ÕX,*2Íᨵ7(X)max-Wt,"•"fix)=J?-3x—1,.f(X)=3X2-3=3(X—1)(X+1).•..xG—3,2,.•.%ᦪᙠ-3,—1,1,2'ᓫ+⌴?ᙠ-1,1'ᓫ+⌴

128.,•Xjv)=A2)=A-i)=i,maxÐX)min=A-3)=-19,*y(^)inax—./(X)min—20.,Ø20,ᦪrḄᨬ¿)20.7.y=/(x)ḄU%ᦪÙÚÛ0x#22(x-2)(J(x)+2f'(x)-xf(x))>0,ᑣ()A.´4)>(2¿+4Ý¿)>Þ3)B.Ð4)>"3)>(2¿+4¨¿)C.(2¿+4Ý¿)>43)/4)D.?/(3)44)>(2¿+4³¿)ᫀC+᪆g(xÅßᑣg,஺)=7à©0xW22஺-2)â)+(2—Éã(äÉ>0,ᡠ0x>22g'(x)<0,ᓽ%ᦪg(x)ᙠ(2,+8)'ᓫ+⌴ᑣg2)>gব>g«)ᓽæçèéᓽ(2¿+4¨¿)>஻(3)»4).8.ºnCiÛÅëì))únC2Ûy=e,ᙠíᐳᑗnᑣ஺Ḅ()C.J-+°°JD.+°°JᫀD2tatn—e+᪆®íᐳᑗnᙠºnG஺2'Ḅᑗjᑖð(஻?cun),(/,ez),ᑣ2ñ"=ᡈ=³zeᡠ³=2f—2,஻=4«7É)«>1)òe',e'(r—2)MM=4(r-1)”>»ᑣ/ó=%L1ãᑣ0t>22/(r)>0°01<ô22/(r)<0,22:ᑠ/(2)=᝕ᡠᦑ⌱D.TT9.PQ%ᦪyu)=x+2cosx+/l,ᙠ05'»wúᦪX|,12,X3ᙳᙠüV1),´X2),./(X3)ýþḄwÿᑣḄ()

129A.-+8B.—2,+00cg,cTD.c-,+8ᫀD+᪆ᦪ/U=x+2cosx+2,ᐔ:x=l—2sinx,0,],TTᵫx=0,+,=8UVxG0,,.,./xd[o,I3,fx>0,,=TlTl},,/ᙠ6,R3/x<஺=++2,/Umin=/W=]+2TT•ᙠ=>஺2?@ABᦪCᑐ2,ᑍ3ᙳHᙠIyUi,#MᐔNOPQḄAR/3=S2>0,জ+ᕜr᎔ঝὶVজঝ+XYZ.10.\A]ᦪI=_?+`2+cx+dᨵ᩽cOd2efX1=X”igx/XḄjᦪklᐵnxḄopg/U=0Ḅqrsᦪ᪷ḄBᦪOA.6B.5C.4D.3ᫀD+᪆yOᦪ᜜="?+b2+“+”HᙠCB᩽cegX/XḄjᦪᑣopg/X=0Ḅqrsᦪ᪷ḄBᦪ{nop7U=X|~X=X2Ḅqrsᦪ᪷ḄBᦪᓽᦪfḄ~>==eḄcḄBᦪᙠ☢Rᙶ᪗ᑁᐸᜧ᝞ᡠyO/U1=X1/X13᝞2ᡠ3ᦪ/UḄ~y=My=MḄcḄBᦪO3,ᡠIopgGx=0Ḅqrsᦪ᪷ḄBᦪO3,ᦑ⌱D.

13011.¡Z2x—y+l=0~¢y=lnx+a£ᑗᑣsᦪaḄ.¥ᫀ2+ln2§+᪆ᵫy=lnx+a©j+<=piᑗc(ªlnxo+a),ᑣy'==2,ᦑª=3lnx=—In2,0ᑗcQ-ln2+a),«ᐭop+2X^+ln2~a+1=0,§+a=2+ln2.12.\ᦪ,/(x)=x(x—c?Y”(c>0)ᙠx=2ᜐᨵ᩽ᜧ16,ᑣ஺=,k=.¥ᫀ616§+᪆-2c?+c2x-k(c>0),"(x)=3x2—4cx+c2=(x—c)(3x—c)(c>0),/fU)>03ᡈx>c,/f(x)<03,1

1312¶/(x)=0,§+x=0ᡈx=?ᡠI·ᓻ)ᙠ=>¹஺|)?ᓫ»⌴½ᙠ=>¾1¿?ᓫ»⌴ÀᡠIÁ14.ÂZᦪÁ)=:?+I2+3+6.+1.\ᦪÃr)Ḅᙠc(1,Å1))ᜐḄᑗ±᳛O6,ᑣsᦪ஺=;\ᦪᙠ(Y1,3)ᑁÇᨵ᩽ᜧᨵ᩽´ᑣsᦪaḄᫀ7(¤Y3)+᪆ᵫ⚪Ê+/'(Ì)=3Í+2"+"+6.\ᦪÏ)Ḅᙠc(1,f1))ᜐḄᑗ±᳛O6,ᑣ(l)=3Xr+2aXl+a+6=6,§+a=—\.\ᦪfx)ᙠ(Y1,3)ᑁÇᨵ᩽ᜧᨵ᩽´ᑣᐸjᦪ/'(%)=3´+2Ñ+஺+6ᙠ(-1,3)ᑁᨵCBqrḄÒcÓ/=(2a)2-4X3Xm+6)>0,3X(-l)2+2aX(-l)+a+6>0,<3X32+2aX3+a+6>0,§+YÔ

132g'(x)Y0+᩽´vg(x)\/᪷î⊤ï᝞ᡠḄᦪᵫðZa=x-e’ᙠR?ᨵCBq{sᦪ᪷ᓽy=a~g(x)ḄᨵCBqrcᵫ᩽´g(—D=YëðZ/ᨵCBc3஺ḄO(Y£0)e1-Hex16.¡Zᦪ#x)=-6x—3,g(x)=Y~—,Ïᦪ1n,஻ö÷£<஻<0,\@ÊḄøùúHᙠ12û(0+°°)»Ù+"Xi)=g(X2)ᡂVᑣ஻Yþ2ḄᨬᜧO.ᫀ4e'+ex+᪆yOg(x)=y,ÿIஹ/z\_11ᡠg(X)2,ᑖឤᜧ0,e'>0,ᵫ⚪!"#x>0ᓽ&ᑣ(0l+g'(x)>0,g(x)ᓫ-⌴1,ᡠg(X)min=g(D=2.7U)=—஺+3>+6W6,ABᦪy=/(x)ḄFG᝞FᡠI(J>)=2+KL஺+3>+6=2ḄM᪷ᑖOP5R1,ᑣn—mḄᨬᜧTP-1(—5)=4.17.(2018•YZḕ\]^᪥`Aaὶὃ)def!xe[-l,l],ឤᨵ|4/k|WbmᓃGR)ᡂqᑣ(rstᨬuT+vᦪaḄTP.ᫀ13+᪆ef!xW[—1,1],ឤᨵ|4/ᡂqxyJz4f—arlmaxxW[—1,1].

133}~x)=4?—ox,xG—1,1,ᑣ᧕t~x)P᜻Bᦪᑣ◤"#ᙠ0,1)Ḅᓽ&.f(x)=12%2“(a<0+f(x)>0ᙠ0ឤᡂq)ᙠ0&ᓫ-⌴1,ᑣ|4axUx=/U)=4—஺>4(a>\2+,/(x)<0ᙠ0,1ឤᡂqᓻ)ᙠ0,1ᓫ-⌴/ᑣ|4fಘ2=|/0)1=஻-4>8(0W4W12+/(=0t'=ᑣBᦪ)ᙠ0,ᓫ-⌴/ᙠ1ᓫ-⌴1ᑣ|4—axlmax=max||}=max1|4-@,A3^\4—a\—g-a2,t(a-3)(a—12>=0,ta=3ᡈ12,(஺=12+|4x3-ar|=8max(4=3++|4_?Ot|max=l(14ᓽ04.<3+|4f-ar|max=|4—4|>1;S-(3l.max£ᡠ¤(஺stᨬuT1+vᦪ஺ḄTP3.()+,-ᦪ%+,.1.(2018•YZḕᦟ¦§⁐©yὶªᨴὃ)¬BᦪJ(x)=sin»(cos±+usinx).প³./U)Ḅᨬu´ᕜ¶(2)dᐵxḄKLᐔ0=¹ᙠº»¼0,¾ᑁᨵMÀÁÂxḄvᦪ³vᦪḄsTÄ.(11/U)=sinxcosx+usin2x=sin2x+ᙶ(1-cos2x)4in2x-^cos2x+^

134ᡠᐔVÅḄᨬu´ᕜ¶r=y=7i.2ÆPxG0,Wᡠ2xᣎÈ“=2x—ÆPy=sin஻ᙠߟ,ÊË1BᦪᙠÌᵨË/Bᦪ"=2x—1=Îᑣ>ÏᡠÐxᙠ0,ÑË1Bᦪᙠ៣ÓË/Bᦪ.ᵫ⚪!ᐵxḄKL,/x=fᙠº»஺ᑁᨵMÀÁÂxḄvᦪxyy=/xÔy=rḄFGÕFᶍÅᙠº»o,ᑁᨵMÀÁ×ḄØÙÚÆPÛ0=0,/ÕÜ=1+ᙶ/Õ2Å=V3-ᡠuWf

135512পᵫcos8=6tsin5=Á43ᵫcosC=§tsin஺=ù33sinA=sin(B+Q=sinBcosC+cosBsin஺=ú33i33(2)ᵫSzM8C=2t^ABACsinA=E.ABAC=65.¦…ABsinB20_ÚACýAB=¥Afi-sinA11BC=sinC=T4.ᙠôABCòþA,B,CᡠeḄÿᑖ4,b,c,2“sinCsinB="sinA+bsinB-csinC.পCḄᜧ;ফ஻cos(஺gj=bcos(2E+A)a£Z)஻=2,ABCḄ☢.(1)ᵫ2஻sinCsin3=஻sinA+bsin5—csinCᳮ!"஽$inC=஻2+/_c2,ᔆ6/2+/?2—c2•NsinC=—З,••'sinC=cosC,•••tanC=(")0

136BcosA,ᐔ)sinB#0,AsinA=cosA,᪷.ᳮ/!0=0"!c=1"S'n4sin6S08c=%csinB=^X2XA/2sin(7t—A-Q5.ᙠABC3"A,B,CḄ45ᑖmb,c,67sinA+sin8=4§sinC(1)COS2A=sin2B+cos2C+sinAsinB,sinA+sinBḄ=>(2)c=2,ABC☢Ḅᨬᜧ=.(DYcc^Ausi—B+cos2C+sinAsinB,

1371-sin2A=sin2B+1—sin2C+sinAsinB,sin2A+sin2B—sin2C=—sinAsinB,>ᵫᳮ,!A+C—/=—ab,τFஹHfgcF+/021,ᵫJᳮ"KcosC=----^~7----=-5,)00,x^R),ᐔ¥)=Y஻/ᓻ)Ḅ^_`abcᩩ4efghḄijkপlᦪᓻnḄᓫp⌴rsh>ফABC3ᑁA,B,CḄ45ᑖa,b,c6=u$=0,sinA=3sinC,mcḄ=48஺Ḅ☢.viyun=m஻-g=^3sincoxcoscox—cos2cox—=^sin20[>cos2aTx-1=sin2cox—7n—1.

138♦abcᩩ4efghḄijw஺T=2G—ᐔ,co=1,•••/(x)=sin(2x-/-1>9*2Eᱏy2xzy2E+{,kGZ,2o2TTTTᑣE—kRZ,•JU)Ḅᓫp⌴rsh~,ᐔ,Iᐔ1,BE—E+g,k£Z.ফᵫ(1)7"8)=sin(281=0,0•C=1,4=3,•A8C=%csinB=1x3Xlx^=()34561.(2018•ḕ⊞ᓝ᪥ὶὃ)᝞^"┵S-ABCQḄ☢51Ḅw,SBᚖ☢.(1)☢SBC☢SAC>(2)SA☢SCOᡠᡂḄ30஺"SBḄ.প¡¢£AC,BD,

139s¤5ABC஺w,ᡠ¥ACJ_8D)¤SB_L☢ABCD,ᡠ¥ACLSB,¤BOCSB=B,BD,S8U☢S8O,ᡠ¥AC_L☢SBD.)¤4Cu☢SAC,ᡠ¥☢S4C_L☢SBD2¦┵⊡ᡂ¨ABC஺A'SCD',¢£A'D,©AELA'D,ᚖஹE,¢£S£ᵫS4'஻CD/7"☢SCZᓽ☢SCDA'.¤CO_L☢A஺஺'A',AEu☢A஺஺'A',ᡠ¥CDLAE,)¤AE_LA'D,A'DQCD=D,A'D,C£>u☢SCO,ᡠ¥AEL☢SCD,/ASEᓽSA☢SC஺ᡠᡂḄ.ªSB=x,ᙠRtZXABS3"SA={l+f"YᙠRtZVWf3"AE=.Wᓝᐗ¤NASE=30஺"ᡠ¥yi+x2,z!x=l,ᓽSBḄ1.2.2018•ḕ¬ᓝ᪥®n᝞^"ᙠ¯°±ABCDE3"CDHNE,/E4c=90஺"☢E4C£>_L☢ABC,CD=2EA=2,AB=AC=2,BC=2,²8஺Ḅ3³.

140DB(1)¡EF஻☢ABC>(2)´AB☢BOEᡠᡂḄ=.প¡µBCḄ3³G,¢£FG,AG,BB஺Ḅ3³"CD=2EA,CD//AE,Q.FG=^CD=EA,FG஻AE,Q.5AGFE¶5,J.EF//AG,☢ABC,AGu☢ABC,஻☢ABC.(2)NE4C=90஺"☢E4C£)J_☢ABC,☢EACDC☢A8C=AC,E4u☢EACD,"E4_L☢ABC,ᵫ(1)7FG஻AE,>.FG_L☢ABC,)AB=AC,GBCḄ3³,Q.AG1.BC,᝞^"¥Gᙶ᪗¸³"ᑖ¥GA,GB,GFᡠᙠ´x,y,zf¹Xºhᙶ᪗»,MA(1,0,0),5(0,,0),D(0,,2),£(l,0,D."0),¼=(0,-2^3,2),B£=(l,/"1),ª☢BDEḄ½ᔣ¿஻=(x,y,z),

141n-BD=0,z—y[3y=0,ᓽx—y+z=O,nBE=0,*y=1,!/i=(0,1,^3),´AB☢BOEᡠᡂḄ=\ABn\——4_HBIInl3.ᙠÀ┵Q—ABC3"DA=DB=DC,஺ᙠ☢A8C`ḄÁÂE,ABLBC,DF±ABF.প☢A8£)_L☢஺EF>(2)AO_LOC,AC=4,ZBAC=60°,´BE☢OABᡠᡂḄ=.প¡ᵫ⚪Ä7☢ABC,ᡠ¥AB_LOE,)AB_LOF,DECDF=D,ᡠ¥A8"☢DEF,)A8U☢ABO,ᡠ¥☢AB£)_L☢OEF.(2)w½ᵫDA=DB=DC,7EA=EB=EC,ᡠ¥E4BCḄ᜜Æ.)ABLBC,ᡠ¥EACḄ3³"᝞^ᡠÇ.ÑEÒEHLDFÓH,¢£BH,ᑣᵫপ7E”J_☢DAB,ᡠ¥ᓽ8E☢D4BᡠᡂḄ.ᵫ4c=4,NBAC=60஺"!AB=4E=BE=2,ᡠdEF=,)஺E=2,ᡠdDF=y[BᓽÕÖ=¬,E”=◤"ᡠ¥sinZEBH=^=-^-.w½᝞^¹»"ᑣA(0,-2,0),D(0,0,2),B(S#-1,0),

142ᡠ¥DA=(O,—2,—2),$=(S"-1,-2).ª☢D45Ḅ½ᔣ¿஻=(x,y,z),ᵫln-DB=0,j-2y_2z=0,!r'[■\l3x—y—2z=0,µz=l,!"=Ø"-1,1).@fnḄᜳÚÛ1A@F2×ᑣIcos0—~----àᓝᔆ"ᡠ¥BE☢DABᡠᡂḄ=á.4.᝞^"ᙠâABCO3"67AB=2,AD=4,³E,FᑖᙠA஺"BC`"S.AE=1,BF=3,¦54EF8åEFᢚç"è³Bᙠ☢CCEF`ḄÁ”ᙠ´஺E`.(1)CDA.BET(2)´ê8,Ḅë>(3)´AF☢EFCDᡠᡂḄ=.(1)¡>B”_L☢CDEF,C.BHVCD,CD1DE,BHCDE=H,BH,OEU☢஺8E,C£>☢DBE,Q.CD±BE.ফw½BH=h,EH=k,ñF©FGᚖEQ³G,;~ØBE,8²ᙠôᢚñõ3ëö"

143᪷.÷øᳮ!BE^^B^+EH2,BF2=BH2+FH2=BH2+FG2+GH2,5=*+F,஻=2,ᓽl9=22"+/z"2+(2-Ar)22,![k=\,´êB4Ḅë2.ab᝞^"ÑEÒER஻DC,ñ³E©ESJ_☢EFC஺U4BxC¥³Eᙶ᪗¸³"ᑖ¥ER,ED,ESᡠᙠ´x,y,zf¹Xºhᙶ᪗»"ª³8(0,y,z)(y>0,z>0),ᵫ²(2,2,0),BE=⎅,8²=3,”2=5,■,]4+(y-2)2+z2=9,\y=1>3(0,2),[z2,BHḄ2.বabBA!£F$M,'AE:BF=MA:MB=13,...$Aᑮ&☢EFCDḄ()$Bᑮ&☢EFCDÚÛḄÜ,9*$Aᑮ&☢EFCDḄ()+,AF=g,ᦑ.4f0&☢EFC஺ᡠᡂ6Ḅ789:.abᵫ(2)<=>?@=(A2,-1,2),BᦑEf4*1F-B=<(-2J-31)23Jஹ.fA,A*872ஹFA=FE+EA=[-y-yS*I&☢EFCDḄAK=ᔣM“=(0,0,1),.AO0&☢EFCDᡠᡂ6ḄᜧQ9,RhinVWᵨ=Y.I[\-5.ᙠ᝞`ᡠaḄbcde*E4_L&☢ABC,£>3J_&☢ABC,ACLBC,hAC=BC=B£>=

1442AE,MA3Ḅe$.DB(1)ijkCMA.EM-,ফiCM0&☢CDEᡠᡂḄ6.<=AপjnoAC=5C,MA8Ḅe$*ᡠpCM1.AB.qEA_L&☢ABC,CMU&☢A8C,ᡠpEA_LCM,oA8DEA=4,AB,E4U&☢ABOE,ᡠpCM_L&☢ABDE,qoEMU&☢ABDE,ᡠpCM_LEM.ফr$Ms&☢CDE,ᚖuH,vwCHx!ED$F,vwMF,MD,/FCM.CMy&☢C0EᡠᡂḄ6.o&☢CDE,EOU&☢CDE,ᡠpMHLED,qoCM_L&☢EDW,EDU&☢ᡠpCM©ED,bMHCCM=M,MH,CMU&☢CMF,ᡠpE£>_L&☢CMF,oMFU&☢CMF,ᡠpEDLMF.IEA—a,BD—BC—AC—2a,ᙠ.6z{A8OEe*AB=2y[2a,“ABḄe$*ᡠp஺E=3a,EM=y[3a,MD=y[6a,ᡠpEM2+MD1ED2,ᡠp.6|6{*ᐸeNEA஻>=90஺*EM-MDf-ᡠpMF=-DE=72a.

145ᙠRtaCMFe*tan/FCM=;=1,qoNFCMG(O஺*90°),ᡠpNFCM=45஺*ᦑCM0&☢COEᡠᡂḄ645஺.<=>᝞`*p$Cᙶ᪗$*CA,CBᡠᙠ.ᑖsxyு*r$Cs0&☢ABCᚖ.Ḅ.z*.6ᙶ᪗*IE4=“*ᑣA(2«,0,0),5(0,2a,0),E(2a0,a),D(0,2a2a)M(a,஻,0).ff9(1)jnoHf=(A஻*a,Aa),CM=(a஻,0),ᡠpdM=0,ᦑEMCM.f(2)IᔣM஻=(1,ᐝ*zo)&☢COEḄAK=ᔣM*ᑣnLCD,ᓽ“•dk=O,n-CD^O.oCE=(2a,0,a),CD^(0,2a,2a),2஺+tZZn~0,ᡠpcn‘2஻yoᓝ2஻z0=(),ᓽ"=(1,2,-2),CM-ny[2CW)=■~=2\CM\-

146\oீ",CM)e[0°,180°],ᡠpீ"*CM)=45°..CM0&☢CZ)EᡠᡂḄ66"0ᡠᜳ6Ḅª6*ᡠp஺=45஺*o«.CM0&☢CQEᡠᡂḄ645஺.6.᝞`*ᙠ|®ABCOEFe*&☢BCFE_L&☢ABC,ZACB=90°,BE=EF=FC=\,BC=2,AC=3.(1)ijkBF_L&☢ACF£)¯(2)i.BD0&☢ACFDᡠᡂ6Ḅª89.পjnA£>,BE,CF°!A$K,᝞`ᡠa*o&☢BCFEL&☢ABC,hACLBC,ᡠpAC_L&☢BCK,

147KBo«BFLAC.qoEO஻8C,BE=EF=FC=1,BC=2,ᡠp²BCK³´|6{*hFCKḄe$*ᑣBO_LCK.ᡠp8OJL&☢ACFD.(2)oBF_L&☢ACK,ᡠpN2Z".0&☢ACFZ)ᡠᡂḄ6.ᙠRSF஺e*8O=Q*DF=|,ᔊcosZBDF=y-.ᡠp.B஺0&☢ACFDᡠᡂ6Ḅª89¸.(+)ᦪᑡI.¹?7⚗ᦪᑡ½¾¿ḄÀ஻⚗yS”*0=1,hÂ+1)*=%+3%+2(ᡝ11).(1)iᦪᑡ½¾¿ḄÆ⚗Çȯ(2)Éᦪᑡ½6“¿ÊuË=1,b+\—b=a+\>iᦪᑡ+7஻¿Ḅᑠ"⚗y஻nnn(1)oa1=S]=1,h(f+1)S஻=£+3a஻+2,ᡠp4+1)5]=Í+3Î+2,ᡠp/=5.ᡠp6s஻=*+3஻஻+2.জÐ஻22Ñ*ᨵ6sLi=஺11+3஻”A|+2,ঝজAঝ6¾=%+3¾Aᱏ-1A3¾-1*ᡠp(஻“+஻,Õ[)3஻A஻஻-113)=0,oci>0,ᡠpa—¾-]=3,nnqo஻1=1,ᡠp½¾¿✌⚗ᑁ=1,ÇÙd=3Ḅ³Ùᦪᑡ*ᡠp஻஻=3஻-2(஻eN").(2)ob”+i—bfj=%+i1b\=l9ᡠpb—b-\=a(n5:2,z/£N*),nnnᡠpÐÑ*b=(b—b-1)+(b-1—b-2)H---Ü(ÝAÞ)+ßnnnnfl

148id---1~஺2+ᡭ=~2~•4H.—PIqË=iÞ〉ᔠãÈ*ᡠp6“=r—(஻eN*).ᡠp2åæ+7஻3஻2-஻+7஻A3஻(஻+2)=◤Aᓭ*ᡠpé᝞AᡭÜ"…+Üë)1]3T?+5஻n+2)=12("+1)(஻+2)*2.I³Ùᦪᑡ½¾¿ḄÀ஻⚗yS”hîáS4ᡂ³Ùᦪᑡ*Ḅ=3ï+2஺1-2.(1)iᦪᑡ½%¿ḄÆ⚗ÇȯফIAN)iᦪðñ)ḄÀn⚗yT.n(1)I³Ùᦪᑡ½•,¿Ḅ✌⚗᜜*ÇÙd,ᵫ$3,ᐶ8ᡂ³Ùᦪᑡ*õ?§3+54=55,2÷Ad=0,জᵫ<75=3஻2+2஻1—2,ঝ4ᑗA1A2=0,ᵫজঝ*஺æ=1,(1=2,o«*a=2n—l(n^N).n(2)ûc“=W=(2஻-1)Q)I,ᑣ஻=Cæ+C2+…+ü*.*,7¯=l-l+3-1+5-Q2+-+(2n-l).(£),,_|,ঞþ”=1Â+3©2+5.+…+Q“_D.(J)",(4)ঞট/஻=1+ᔁ+$+“.+ᧅ(2஻—1>&2஻+3=32஻

149'7R=6—^m஻CN*).3.!"#$ᦪᑡ4”'((஻+l)a"=2/+஻+&,k&R.(1))ᦪᑡ*+,Ḅ.⚗012(2)34=----,)ᦪᑡ6஻,Ḅ7஻⚗8S஻.%஺஻+19(1):;ᵫ(஻+1)+=2஻2+஻+=>஻=1,2,3,3+k\0+k2\+k?ᑮa\—21a2=-3-1஻3=~4-*+,A#$ᦪᑡ2஺2=0+ḄCD20+2E3+k.2]+kᓽG-ᓝ+F9k=-1.ᵫI(஻+l)a=2n2+n—1=(2஻-1)(஻+1),rtJ.஻+1?0,/.a=2n-l(nEN*),n:;G4,JA#$ᦪᑡ30$4d,ᑣa=a\+d(n—1)=dn+(a\—d)nt2(஻+1)஻“=(஻+\)(dn-Va\-d)=ᵫ?2+஺]஻+஺1-d,••drTa

150-\~a\—d—1rr-\-n~\~kNIOP஻£N”ᙳᡂT/d=2,ᑣU0=1,9==-1,V=2஻-1(஻£ஹ”).[a\—d=kyᓰ_4/________4஻ZQ)ᵫ"஻ߟ+++1(2஻-1)(2஻+1)=4\14஻-14஻—1=1+(2n-l)(2n+l)=2(2n-l-277+l)+1&=]+^2+b+…+_=2(1-3)+1+␺-3+1+a-9+1+…+b/^)+1404+d+e…+fᔆᾓ)+஻+஻2஻+1

151n2rr+2nn=(n£N*).2/?+l2H+14.n2018•rᐶtu᫑wxyz!"ᦪᑡ*+,'({xi=l,x“=x“+i+e*M-l,{“GN*(1)00,n—\ᑁ=1>0,Ꮇ3ᡃ>0,kGN*,kn,ᡂT஻=A+141+1W0,ᑣ஽=x*+i+—1W0,ᦑ4+i>0,x”>0("GN*),ᡠx=x„+i+e'"H—1>x+i+e0—1—x„+i,nn¡¢,x„>x„+i>0.(2)x„+]X„+2x„+i—x=x+i(jc„+i+ev,,+l—l)+2r„+i—x+t—e't,,+l+l=^+i+e',,+l(x„+|—1)+1,nnn3y(x)=x2+e*(x-1)+1(x20),ᑣ(x)=2x+e{x20,ᡠᜧx)ᙠ[0,+8)¢ᓫ°⌴²³x)4(0)=0´+i+ev"+l(x„—1)+1=1ᓽ+1)µ0)=0,+1ᦑx,iX”+1>x“2v”+1.(3)ᵫ(2)¶+1<20+1),ᡠ஻>1Xfj-r1/5+1<2(£+1·“<2"¸+1)=2",”=19+1=2",ᡠ;W2",ᓽ%25,JᵫIx=x+\+eb,+,—1Nx஻+]+(¼஻+]+1)—l=2x஻+inn1ᡠ᧕"2L1¡¢e,wx“wgzi5.n2018•ÀÁḕÃÄÅxyz!"ᦪᑡ*+,Ḅ✌⚗஺ÇÈ,ᓽ·஻=1,2,….J%I1

152(1))*“",Ḅ.⚗01;(2){NOPḄ¼>0,a.2*^(]¢ÇÊ-J'஻=12…;,2(3){+^Z2^---·4„>"+[•..3+প9•an+,~2a+l'n3"(2)ᵫ(1)"Í=ÎÏ>0,1,1(2_A__11(2,1T—[j^(1+Ó1+x(1+x)213"71+x(1+x)2\3".•.ÔÕ#1ᡂT.বᵫ(2)"NOPḄx>0,ᨵ஺]+஺2+…T¦§+¨…+᜼-"J**•×*=ᨣ+i+-+Ù=Ú1T)/஻2nᑣÛ+Ü^ÝÞß=>à...ÔÕ#1ᡂT.6.!"ᙠᦪᑡ*஺஻,Å'(/=2,஺஻+]='^^âS஻4+Ḅ7஻⚗8.প:a+i>ann(2){a=cos3.2"T2nஹᓝC27+TT2n(3){S„>n-.54(1)ᵫ⚪P"*+,Ḅᔜ⚗ᙳ4çᦪ42*+1—2a„—a„+l—2a„=(1—a“)(1+2a”).ᡠ⌕ê+i>a“ë◤⌕a“vlᓽß.í☢ᵨᦪ;4<1.জn=\஻1=]<1ᡂT,

153ঝᎷ3"=%ñ<1ᡂTòó஻=&+1ñ+1=1â11•¡¢ᡠô+<1ᡂTᡠ7T2ᵨᦪ;a=cos32஻-|nজn=\«i=1=cosõᡂTঝᎷ3n=k^=cosòón=k+\f÷_\ãᐔ4+]—ஹ2\2-cosTT¡¢ᡠôQ”=COSy-i.33ᵫ⚪Pø2"1—4?Ta-\-\~

154~~=L~~—1—C^i—1-COS22.2ᐔOᐔஹ-z=sin~32"iJ~n஻22,2ᐔ2஺஻-i>l—,,.τ127+ᐔ2ᦑ஻=15I=2>1—54;n஻225„>Si-212K-4If.JV27+K2>L54.¡¢ᡠôs„>஻ú⃬.«+᪆561.2018•ÀÁḕÃÄÅxyzüýᱥÿf=2஻yp>oḄᯖr᳛ᑖᵨ,Ḅ

155ᩩ/”2+%2=2,E"#$A,B,/2E"#$c,D,'AB,CD)ḄᙊM,ᙊNMNᙊ-Ḅ.ᐳ0ᡠᙠ3/.16h80,:80,;<=FMFNå2p226MᑮIḄ?@ḄᨬBCDEFᱥEḄHI.প;<ᵫ⚪MNFᱥEḄᯖḄ1\ḄHIy=kx+y}y=k\x+?9ᵫ,Ox-2pk\x—p=0.£=2py,RA,8Ḅᙶ᪗ᑖVW%2XᑣᵫMZ[\HIḄ]^ᦪ᪷abc+%2=2஻dW+=2஻e+p,.♦.MḄᙶ᪗pki2e+§,⊈=Opk\,pj.ᳮlmNḄᙶ᪗b&2,Pq+ᑗs=■42,Pv$Zs.w=/x+/e.•••ᦇ{+22=2,e80,228஺A2,0

156ᦑi=14ᨬBC.ᵫNm4mp=8.ᦑᡠEFᱥEḄHIf=]6).2.NᙊC=᜛+5=1("ᔊ80)ḄᯖᑖZQ(£0),F(y[2,0),ᵯ/L¤^)2ᙠᙊC[.(1)EᙊCḄHI(2)R¦Zy§[Ḅ6ᙊC[¨ᙠM,N,©mx=2ḄE'QP)Ḅᙊ☢«ḄC.(1)ᵫNmᯖ?஺=ᖾ2a=|EQ|+lEFd=\^|+⁠=4•ᡠda=2p,ᡠ'஺2=஻2±2=8—2=6,22ᡠ'ᙊCḄHIZ²³=1.(2)RPḄᙶ᪗(0,஺MN᳛¨ᙠlm´NᑖZµ§Ḅ¶mᑮ*=?MN᳛¨ᙠRMNḄHIy=H+f,M(xi,yDNg)2)ᑣᵫ»=2Ḅm¼=½2,জy=kx+t,ὶÀ“Â[7+6=bm(3+4ᨴ)f+8Äv+4/-24=0,ᵫ⚪Mm4=64e2Å3+4᮱)(4*-24)0,᦮ᳮm/8᮱+6,ᵫ᪷ÈᦪḄᐵÈm83+Ê2=3+4e4/24ঝËM=ÌÍ

157ᵫজঝÏÐÑ{,èÒ=2Ó8’ÔÕ+6ஹ|12r2-8^0,2oᵫmØf<6,?1*+6×6,7Ù[{Wfv6,2+ÚÛÜ'¦/)Ḅᙊ☢«S=7T1-,ᡠ'SḄCZÝÞ2ᐔ)3.(2018•àá“â½ᐰäå”ὶὃ)᝞èN8=2Ò2/+஻?FᱥC=f=y"#$A,BÇ,a;1).(1);<=êABëy=-xìᑖ(2)EíM4B☢«mᨬᜧCmḄC.প;

158-"/+”|1—2(÷2+ni)\(O,"=@®.4.DEFᙊCIa+£=1(“>M0),A,BOFᙊPxRḄTUVWMXFᙊCḄ⚔W2Z[\M4Ḅ]᳛X_[\ᔊ8Ḅ]᳛X42,é=_0(1)bFᙊCḄcd᳛e(2)Z[\/PxRVfW஺(gh0),VFᙊfP,஺TWjklm>=3n'1OPQḄ☢5ᨬᜧ)bFᙊCḄmq.>(l)M(O,b),A(—a,O),B(a,O),s=,t=g£,,bbb22ck'^=-aa=-7=-ye=a=3-ফᵫপEe—,,“2=3,2,Z>2=2C2,yZFᙊCḄmqX2+3y2=602,Z[\/ḄmqXx=niy-,(2x2+3y2=6c2,[x=my-y[3,,(2,஻2+3))?—4y[3my-\-6-6')),Q(X2,ᑓ)TWᡠA=48m2—4(2஻+3)(6—6c2)>0,ᵫ᪷PᦪḄᐵ,+=»)'2=e2f3,77*=3t>,ᡠ=g3”36/w2ᐭT,6—6c?2ᶭ+3'

159ᡠSAOPQ=110aM_1=ᑶᑛ121C-2)+3g᧼+ஹ#''1\m\□5'j¤'ᶭ=2),¥¦ᡂ¨6)஺2=/,ᐭ/,6)/>0ᡂ¨ᡠFᙊCḄmqX᱆+5=1.5.DEᙠª☢[«ᙶ᪗®WP(x,y)(x20)ᑮWN(l,0)Ḅ±c²ᑮyRḄ±cᜧ1.(1)b®WPḄ³´CḄmqe(2)µ¶WM(2,0)Ḅ[\P³´C}VfA,BTWZW஺ᙠ[\x+)-l=0jkl¸1+¹=º0(஺Xᙶ᪗»W)b¼ᦪrḄᨬh/.>(1)m½g|XWP(x,y)(x20)ᑮWML஺)Ḅ±c²ᑮ¾RḄ±cᜧ1ᡠ¿Àg1=MÁWNḄᙶ᪗ᐭÂ᦮ᳮ,=.ᦑWPḄ³´CḄmqOÅ=4Æm½Ç|Xª☢®WᑮWML0)Ḅ±c²ᑮyRḄ±cᜧ1ᡠWPᑮWN(l,0)Ḅ±cPWPᑮ[\È=g1Ḅ±c}¥ᓽWPḄ³´O»WX⚔WᯖWᑮÊ\Ḅ±cX2,ÂjXËÌᔣÎḄÏᱥ\ᡠWPḄ³´CḄmqX=4Æ(2)ᵫ⚪ÒE[\ABḄ]᳛Óᙠj]᳛ÔX0jPÏᱥ\Å=ᨵTUVWZ[\AÕ|y=Z(x—2),g,,y=k(x-2),A(x,)B(&,)஺(Ùy),ᵫÅ,df—%ᓃ+1+4᮱=0Ý#0).tb=4x,/=16(2ß+1)>0ឤᡂ¨ᡠᑁ+ᜐ=%»X¬ஹ2=4,|XOA+OB=f஺஺ᡠ(ᵫ+ᑗ+”)=«åæ)ᵨ+Æ24(F+1)yi+ஹ2k(x\-2)+k(x2-2)kQ]+3)—4ᦇ4ᓽ௄=—^ߟ,ï=-=J=ðWQᙠx+y—1=0ᡠñᡠ=4(%4+1)=4+£)2+32ᦑ¼ᦪïḄᨬh/X3.26.᝞ó¶FᙊMII+)2=1ḄÎᯖWô[\VFᙊf4,CTW.

160õ1ö'A,C÷ᓄ)ᙠxRbùWQ,ú,NAQF=NCQFeõ2öZ[\QAVFᙊMḄûgUVWXB,üýBFÂþÿᙊD,ABCDḄ☢ᨬᜧACḄ.1AQi,$CM,yiT,Qq,O,A,C'ᙠx*+ACḄ,x=y+l,1ᐭᙊMḄ42+672+2“91=0.ᑣ<+”=9>7,>1>2=ᔡ7ᵫC⚪EF°+H2=ᔁ+J_L|N9<7+”ᑴ-4Ox\-qTOx-c^2_»T2+1-g+»V+1-qTW9qM-q_201L2+1-0஺|+72_஺ᑴ94Y2—4—'ᓽ2ry,y+1+>'2=0,2᦮ᳮ92/—2/I—qT=0,ᵫ⚪Ebcfe+fឤᡂiᑣq=2,A,Cᙠx*+j஺2,0kᯠ4mn4QF=/CQFᡂiᡠqQḄᙶ᪗t2,0.2ᵫ1ENAQF=NCQF,ZBQF=ZDQF.ᡠq8,Cᐵx*xyA,0ᐵx*xyᡠqA8C஺t9z{Ὺ}.ᑣABCDḄ☢5஺=ᵫ9ᵯ1᝞9ᑘ=9ᵫxyឋ'/>0,4S'=2+23,S'=0,4+=

161,ᓝ8)+ᓫ⌴ᡠq6=ABCDḄ☢Sᨬᜧᙠ.ACḄtx=±y+1.()-ᦪ%Dᦪ1.(2018•ḕ¡¢£)¤ᦪ/U)=ar2+bx+c(aW0),VL=«)¬஺2஻+3),®ᙠ(91,1—1))ᜐḄᑗᚖ)*.(1)ᵨaᑖ´⊤¶b·c¸(2)beᨬ¹¤ᦪg(x)=-/WexḄᓫ».(x)=2ax+b,2cl+3=c,ᵫ⚪Cᑣb=2ac=2஻+3.92஺(9l)+b=0,,鼾9〃+--4、39-值♦4733ᨵb=3,c=y33333-2-工十-/=--½1x)=4X-2-22?A23-2ᡠqg'(x)=47g'(X)=O,X]=-2,X2=2.xG(—8,—2)g'(x)<0,ᦑg(x)ᙠ(98,—2)+,¤ᦪ;xd(—2,2),g'(x)>0,ᦑg(x)ᙠ(-2,2)+,Ĥᦪ¸Xd(2,+8)/(x)

162/./(l)=e2,Ù•.Ô)=e?,ÛᡠḄᑗ,y-e2=e2(x-l).ᓽy=e1x.(2)ab.•.x=Z0ÜᓽQ0,.•.xÒCxGR,A(k—x)Wekxឤᡂig(x)=Qk'+kx—lc,g'(Þ)=9k"+4=©1—e'),x<0g'(x)<0,x>0g'(x)>0,g(X)ᙠ(98,0)+t¤ᦪᙠ(0,+8)+tĤᦪg(X)min=g(0)=19᮱Þ஺Ùfc>0,0<ᦈ1.åÛxÒCXGR,ᓻçឤᡂi=ᓻ)„^«,XGR.•••/'(*)=kFì-x)—ek=eF—"91),KO,Þ2A9îf(x)Þ0¸f(x)<0,ᙠ(98,Z—0+t¤ᦪᙠîb9£+8)+tĤᦪ.ÙX——8,*x)f+8,½(<0,Ûðñឤᡂiòó.•/<0'ôõᩩ÷¸fc>0,xW/9¸f(x)>0¸1>%9¸f(x)<0,KK¸J(X)ᙠ(98,Tû+tĤᦪᙠd+8)+t¤ᦪ..\ZU)max=/(%9£)=14ý91W0,ᓽ91WZW1,k>0,...OcAWl,þ+ᡠÿᦪkḄ(0.3.ᦪ«r)=xlnx—af+g—l)x,g(x)=e*—ex.(1)#6=0%ᦪ1x)ᨵ'(᩽*+ᦪ”Ḅ-ফ/>=ᓻ)ᙠ*(1,3))ᜐḄᑗ67x89:;ᦪ<)==)+ᡈ0ᙠxe(l,+8)%,ᐸABCDE*ᜐᑗ6ḄFGHᙳJ┦H+ᦪ4Ḅ.

163M(1)#b=0%f[x}=x

164x-a^-x,f(x)=lnx~2ax,•1zj(x)=x

165x—a^—xᨵ2(᩽*OPQInx—2^=0ᨵ2(TUḄM,ᓽy=2a7XY=ZḄABḄ[*ᨵ2(..1—Inx•='a)=—E#x£(0,e)%,mf(x)>0,m(`)ᓫb⌴d-#xe(e,+8)%,mr(x)<0,m஺)ᓫb⌴h.m(x)ᨵ᩽ᜧ3j"w(o/%=a)wo-#x£(l,+8)%0<=(1)<5.#aep+8)%y=2a7஻0)=ZḄABḄ[*ᨵ஺(-#஺r(E8,0ᡈ4=s%y=2a7ᡂ0=■^ḄABḄ[*ᨵ1(;#ae(0,9%y=2a7”(x)=ZḄABḄ[*ᨵ2(.xCᦪ஺ḄJ(0,g(2)ᦪ)=/5)ᙠ*(1,11))ᜐḄᑗ67x89:(1)=0;y1)z0,,:f(x)=lnx-2ax-\~b,:b=2ci;aWl.h(x)=x

166x~ax+(஻-l)x+e"—exᙠx£(l,+°°)0t,ᐸABḄDE*ᜐḄᑗ6ḄFGHᙳJ┦Hᓽ#>1%hr(%)=/a)+/(>஺ឤᡂᓽInx+e"—2஻x+2஻-e>0ឤᡂr(x)=Inx+ev—2ax+2a—e,'.t'a)=-+e”E2஻9(x)=:+e"—2m(p'(x)=ex—A,1Vx>l,e>e,?<1(p‘(jt)>o,-.0(X)ᙠ(1,+8)Cᓫb⌴d

167ᓽr'(x)ᙠ(1,+8)Cᓫb⌴d,.".t'(x)>t'(l)=l+e—2“#;%/(x)20,.,.«x)=lnx+e“-2ax+2a—eᙠ(1,+8)Cᓫb⌴d,.,./(%)>/(1)=0ᡂ't'প=l+e-2a<0,t'(In2a)=jj4^+2a—2a>0,...ᙠG(l,In2a),/(x())=0.(X)ᙠ(1,+8)Cᓫb⌴d.•.#XW(1,)%/(x)<0,f(x)ᓫb⌴h,...«)<«1)=0,f(x)>0Tឤᡂ.(i+elᦪaḄJ(-8,.4.ᦪ/(x)=x—1+ae”.(1)/(x)Ḅᓫbឋ-(2)X],7U)Ḅ'(*¡ᑴ+12>4.পMf(x)=l+ae\#a20%f(x)>0,ᑣ¥)ᙠRCᓫb⌴d.#“<0%f(x)>0,§x0,§x>2.ᦑg(X)min=g(2)=E1<0.#X>1%g(X)<0,#X<1%g(X)>0,

168T¬X|4¯°±²2>4—X|,¡4-X|>2;g(x)ᙠ(2,+8)Cᓫb⌴d,...⌕X|+´2>4,µ◤g(M)>g(4—X1),•-g(xi)=g(x2)=a¸µ◤g(xi)>g(4—xi),ᓽ1e1e1ᓽ62”¹4(ᑴE3)+JEih'(2)=0,ᙠ(1,2)Cᓫb⌴d.h(x)4§.5.5ᦪ«r)=4+¡nx,g(x)=mx.(1)+ᦪ/U)Ḅᓫb¿À-(2)#஺=0%«r)Wg(x)ឤᡂ+ᦪÁḄ-(3)#a=l%+¡#x>l%(x+1)(²+ᒴ/0)>2(1+1).(1)Mᐔ0="ZḄÄÅÆJ(0,+8),Ç஻/ஹl-S+lnx)\-inx-a;/஺)=-P=-PE•ᵫf(x)>0§1—Inx—஻>0,ᓽInx<\-a,M§04<9E“••ËÌᙠ(0,9")Cᓫb⌴dᙠ(e+8)Cᓫb⌴h.InY(2)Ma=0,ÍÌ=--,

169./(x)Wga)QZZ,yInx.,/ஹ1—21nxu(x)=?஻W=—,ᵫu(x)>0§02(i+¡),¯°Ð(x+l)(lnx+l)2e'I¯Ñ±e+Òxxe'+TA(x+l)(lnx+l)….x~

170x஺(Ó=^Eஹ----4ᑣp(x)=--]x—1᜛(x)=x_lnx,ᑣ3'(x)=l—~=—Vx>l,(x)>0,¸᜛(Õᙠ(1,+8)Cᓫb⌴dp(x)>9(l)=1>0,p'(x)>0,p(x)ᙠ(1,+8)Cᓫb⌴d.,./?(%)>/?(1)=2,•*e+le+l*2¬T஻a)=KT.2e"[(1—e")“h஺)=(xe+l)2Vx>l,/.1—ev<0,.h'(x)<0,/7(x)ᙠ(1,+8)Cᓫb⌴h,2#x>i%/?(%)2(l+§,x>\.6.ᦪ#0=¨+|ᑖE3|—2,a>0.(1)+ᦪy=/(x)Ḅᓫb¿À-ফ#஺6(0,5)%Ù±ÚÛX|C[0,l],Üᙠ©Þ[0,1],à§áD+=2)=஺+ᦪ஻Ḅ.

171M(1)/(ᐗ)=3+|ãE3|—2(஻>0)3x+ax-5,3A-ax-\-1,x<ä.a3*+஻3{3x~a,x<~.#Næçᓽè3%'lj,ᓫb⌴d¿ÀJE8ᦪy=/UéḄᓫb⌴h¿ÀJj+8)Yê2éᵫ⚪ÛÙ±ÚÛx«[O,l],Üᙠí6[஺,1]à§îḄé+ᐔᑗ=0,¯°±#xG[O,l]%,yXmin+yXmax—஺ᵫপ§#3W“<5%ïᓻéᙠ[஺§Cᓫb⌴hᙠ©1]Cᓫb⌴d,ᡠãZWmin=/(1)=1E2,á)max=maxò0),/(l)}=max{l,a—4}=1,27ᡠã©-2+1=0,M§஺=3-yiéCᓫb⌴h,#0

172xCᡠùa=3.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭