2022年全国统一高考文科数学试卷(全国甲卷)

2022年全国统一高考文科数学试卷(全国甲卷)

ID:83253448

大小:422.60 KB

页数:7页

时间:2023-03-14

上传者:187****8149
2022年全国统一高考文科数学试卷(全国甲卷)_第1页
2022年全国统一高考文科数学试卷(全国甲卷)_第2页
2022年全国统一高考文科数学试卷(全国甲卷)_第3页
2022年全国统一高考文科数学试卷(全国甲卷)_第4页
2022年全国统一高考文科数学试卷(全国甲卷)_第5页
2022年全国统一高考文科数学试卷(全国甲卷)_第6页
2022年全国统一高考文科数学试卷(全国甲卷)_第7页
资源描述:

《2022年全国统一高考文科数学试卷(全国甲卷)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

2022年普通高等学校招生全国统一考试(全国甲卷)注意事项:1.答卷前,考生务必将自己的姓名﹑准考号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。2.请仔细阅读各种题目的回答要求,在规定的位置填写您的答案。3、不要在试卷上乱写乱画,不要在标封区填写无关内容。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,则()A.B.C.D.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若.则()A.B.C.D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()

1A.8B.12C.16D.205.将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()A.B.C.D.6,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.B.C.D.7.函数在区间的图像大致为()A.B.C.D.8.当时,函数取得最大值,则()A.B.C.D.19.在长方体中,已知与平面和平面所成的角均为,则()A.B.AB与平面所成的角为C.D.与平面所成的角为10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和

2,体积分别为和.若,则()A.B.C.D.11.已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为()A.B.C.D.12.已知,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量.若,则______________.14.设点M在直线上,点和均在上,则的方程为______________.15.记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.16.已知中,点D在边BC上,.当取得最小值时,______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:,0.1000.0500.010

32.7063.8416.63518.(12分)记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.19.(12分)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).20.(12分)已知函数,曲线在点处的切线也是曲线的切线.(1)若,求a:(2)求a的取值范围.21.(12分)设抛物线的焦点为F,点,过的直线交C于M,N两点.当直线MD垂直于x轴时,.(1)求C的方程:(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为

4(s为参数).(1)写出的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.23.[选修4-5:不等式选讲](10分)已知均为正数,且,证明:(1)(2)若,则.2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)参考答案注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.B3.D4.B5.C6.C7.A8.B9.D10.C11.B12.A二、填空题:本题共4小题,每小题5分,共20分.13.##14.

515.2(满足皆可)16.##三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)A,B两家公司长途客车准点的概率分别为,(2)有18.(1)证明见解析;(2).19.(1)如图所示:,分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.(2).20.(1)3(2)21.(1);(2).

6(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1);(2)的交点坐标为,,的交点坐标为,.[选修4-5:不等式选讲]23.(1)证明:由柯西不等式有,所以,当且仅当时,取等号,所以;(2)证明:因为,,,,由(1)得,即,所以,由权方和不等式知,当且仅当,即,时取等号,所以.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭