欢迎来到天天文库
浏览记录
ID:83135115
大小:107.82 KB
页数:6页
时间:2024-08-31
《2022届新高考数学一轮练习54二项分布、超几何分布与正态分布Word版含解析.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
专练54 二项分布、超几何分布与正态分布条件概率、伯努利试验、二项分布与正态分布.[基础强化]一、选择题1.随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=0.2,P(2<ξ<6)=0.6,则μ=( )A.6 B.5C.4D.32.已知X+Y=8,若X~B(10,0.6),则E(Y)和D(Y)分别是( )A.6和2.4B.2和2.4C.2和5.6D.6和5.63.设随机变量X~N(2,4),若P(X>a+2)=P(X<2a-3),则实数a的值为( )A.1B.C.5D.94.[2021·山东威海模拟]设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则p=( )A.B.C.D.5.一个袋子中有4个红球,3个黑球,小明从袋中随机取球,设取到一个红球得2分,取得一个黑球得1分,从袋中任取4个球,则小明得分大于6分的概率是( )A.B.C.D.6.[2021·山东东营一中模拟]甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( )A.B.C.D.7.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p=( )A.0.7B.0.6 C.0.4D.0.38.设X~N(μ1,σ),Y~N(μ2,σ),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)9.(多选)某市有A,B,C,D四个景点,一位游客来该市游览,已知该游客游览A的概率为,游览B,C和D的概率都是,且该游客是否游览这四个景点相互独立,用随机变量X表示该游客游览的景点的个数,下列正确的是( )A.游客至多游览一个景点的概率B.P(X=2)=C.P(X=4)=D.E(X)=二、填空题10.已知随机变量X~B(n,p),若E(X)=30,D(X)=20,则p=________.11.随机变量X~N(3,σ2),且P(06)=________.12.在我校高三高考调研中,数学成绩X~N(90,σ2)(σ>0),统计结果显示P(60≤X≤120)=0.8,假设我校参加此次考试的有780人,那么估计此次考试中,我校成绩高于120分的有________人.[能力提升]13.(多选)[2021·山东泰安模拟]“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.某杂交水稻种植研究所调查某地水稻的株高,得出株高X(单位:cm)服从正态分布,其密度函数为f(x)=·e-,x∈(-∞,+∞),则下列说法正确的是( )A.该地水稻的平均株高为100cm B.该地水稻株高的方差为10C.随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大D.随机测量一株水稻,其株高在(80,90)和在(100,110)之间的概率一样大14.(多选)某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择每个餐厅的概率相同),则下列结论正确的是( )A.四人去了四个不同餐厅就餐的概率为B.四人去了同一餐厅就餐的概率为C.四人中恰有两人去了第一餐厅就餐的概率为D.四人中去第一餐厅就餐的人数的均值为15.2012年国家开始实行法定节假日高速公路免费通行政策,某收费站在统计了2021年清明节前后车辆通行数量,发现该站近几天每天通行车辆的数量ξ服从正态分布ξ~N(1000,σ2),若P(ξ>1200)=a,P(800<ξ<1000)=b,则+的最小值为________.16.一个口袋里装有大小相同的5个小球,其中红色有2个,其余3个颜色各不相同.现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是________;若变量X为取出的三个小球中红球的个数,则X的数学期望E(X)=________. 专练54 二项分布、超几何分布与正态分布1.C 由正态分布的特点可知,P(ξ>6)=1-P(ξ<2)-P(2<ξ<6)=0.2,∴μ==4.2.B ∵X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)=2.4,又X+Y=8,∴Y=8-X,∴E(Y)=8-E(X)=8-6=2,D(Y)=(-1)2D(X)=2.4.3.B ∵P(X>a+2)=P(X<2a-3),∴=2,得a=.4.A ∵随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,∴,解得.故选A.5.A 记得分为X,则X=5,6,7,8.P(X=7)==;P(X=8)==.所以P(X>6)=P(X=7)+P(X=8)=+=.故选A.6.A 由题意,甲在4局内(含4局)赢得比赛包含3种情况:①甲胜第1、2局,概率为p1=2;②乙胜第1局,甲胜2、3局,概率为p2=×2;③甲胜第1局,乙胜第2局,甲胜第3、4局,概率为p3=××2,所以甲在4局以内(含4局)赢得比赛的概率为p=2+×2+××2=.故选A.7.B 由题意得X~B(10,p),则D(X)=10×p×(1-p)=2.4,得p=0.4或p=0.6,又P(X=4)0.5,∴p=0.6.8.C 由图可知,μ1<0<μ2,σ1<σ2, ∴P(Y≥μ2)P(X≤σ1),故B不正确;当t为任意正数时,由图可知P(X≤t)≥P(Y≤t),而P(X≤t)=1-P(X≥t),P(Y≤t)=-1-P(Y≥t),∴P(X≥t)≤P(Y≥t),故C正确,D不正确.9.ABD 记该游客游览i个景点为事件Ai,i=0,1,则P(A0)=1-=,P(A1)=3+C··2=,所以游客至多游览一个景点的概率为P(A0)+P(A1)=+=,故A正确;随机变量X的可能取值为0,1,2,3,4;P(X=0)=P(A0)=,P(X=1)=P(A1)=,P(X=2)=×C××2+×C×2×=,故B正确;P(X=3)=×C×2×+×C×3=,P(X=4)=×3=,故C错误;数学期望为:E(X)=0×+1×+2×+3×+4×=,故D正确,故选ABD.10.解析:∵∴1-p=,∴p=.11.0.15解析:∵X~N(3,σ2),∴P(X<3)=0.5.又P(06)=P(X<0)=0.15. 12.78解析:∵X~N(90,σ2),∴正态曲线关于直线x=90对称,又P(60≤X≤120)=0.8,∴P(X>120)==0.1,∴估计高于120分的有780×0.1=78人.13.AC 正态分布密度函数为,x∈(-∞,+∞),由题意知μ=100,σ2=100,所以该地水稻的平均株高为100cm,方差为100,故A正确;B错误;因为正态分布密度曲线关于直线x=100对称,所以P(X>120)=P(X<80)>P(X<70),故C正确;P(100P(801200)=a,P(800<ξ<1000)=b得a=0.5-b,所以a+b=,则+=2(a+b)=2≥2=32,所以+的最小值为32.16. 解析:现从5个小球中任意取出3个小球,基本事件总数n=C=10,其中恰有2个小球颜色相同包含的基本事件个数m=CC=3,恰有2个小球颜色相同的概率是p==.X的所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==,所以E(X)=0×+1×+2×=.
0.5,∴p=0.6.8.C 由图可知,μ1<0<μ2,σ1<σ2, ∴P(Y≥μ2)
P(X≤σ1),故B不正确;当t为任意正数时,由图可知P(X≤t)≥P(Y≤t),而P(X≤t)=1-P(X≥t),P(Y≤t)=-1-P(Y≥t),∴P(X≥t)≤P(Y≥t),故C正确,D不正确.9.ABD 记该游客游览i个景点为事件Ai,i=0,1,则P(A0)=1-=,P(A1)=3+C··2=,所以游客至多游览一个景点的概率为P(A0)+P(A1)=+=,故A正确;随机变量X的可能取值为0,1,2,3,4;P(X=0)=P(A0)=,P(X=1)=P(A1)=,P(X=2)=×C××2+×C×2×=,故B正确;P(X=3)=×C×2×+×C×3=,P(X=4)=×3=,故C错误;数学期望为:E(X)=0×+1×+2×+3×+4×=,故D正确,故选ABD.10.解析:∵∴1-p=,∴p=.11.0.15解析:∵X~N(3,σ2),∴P(X<3)=0.5.又P(06)=P(X<0)=0.15. 12.78解析:∵X~N(90,σ2),∴正态曲线关于直线x=90对称,又P(60≤X≤120)=0.8,∴P(X>120)==0.1,∴估计高于120分的有780×0.1=78人.13.AC 正态分布密度函数为,x∈(-∞,+∞),由题意知μ=100,σ2=100,所以该地水稻的平均株高为100cm,方差为100,故A正确;B错误;因为正态分布密度曲线关于直线x=100对称,所以P(X>120)=P(X<80)>P(X<70),故C正确;P(100P(801200)=a,P(800<ξ<1000)=b得a=0.5-b,所以a+b=,则+=2(a+b)=2≥2=32,所以+的最小值为32.16. 解析:现从5个小球中任意取出3个小球,基本事件总数n=C=10,其中恰有2个小球颜色相同包含的基本事件个数m=CC=3,恰有2个小球颜色相同的概率是p==.X的所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==,所以E(X)=0×+1×+2×=.
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处