利用MATLAB-仿真偏振控制器(利用邦加球算法)

利用MATLAB-仿真偏振控制器(利用邦加球算法)

ID:82689871

大小:45.00 KB

页数:8页

时间:2022-10-30

上传者:胜利的果实
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第1页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第2页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第3页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第4页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第5页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第6页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第7页
利用MATLAB-仿真偏振控制器(利用邦加球算法)_第8页
资源描述:

《利用MATLAB-仿真偏振控制器(利用邦加球算法)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

______________________________________________________________________________________________________________利用MATLAB,仿真偏振控制器(利用邦加球算法),验证固定偏振态到任意偏振态的转换,其结果布满整个邦加球-MATLABsimulationusingpolarimetriccontroller(with),fixedballalgorithmtoanypolarizationtransformationofpolarization,andtheresultisfullofwholenationsplustheballclearclc%QHQsubplot(1,2,1)[x,y,z]=sphere;mesh(x,y,z);xlabel('S1')ylabel('S2')zlabel('S3')boxoncolormap(bone);holdon%入射光%I=[1;0;0;1];%右旋圆偏振光(可见)%I=[1;0;0;-1];%左旋圆偏振光%I=[1;1;0;0];%水平线偏振光%I=[1;-1;0;0];%垂直线偏振光(可见)%I=[1;0;1;0];%45度线偏振光I=[1;0;-1;0];%-45度线偏振光(可见)%I=[1;-0.2;-0.5;0.8994];%某一椭圆偏振光plot3(I(2),I(3),I(4),'*')%画出入射光的偏振态位置精品资料

1______________________________________________________________________________________________________________%各波片的方位角theta1=rand(1,5000)*pi-pi/2;theta2=rand(1,5000)*pi-pi/2;theta3=rand(1,5000)*pi-pi/2;subplot(1,2,2)[x,y,z]=sphere;mesh(x,y,z);xlabel('S1')ylabel('S2')zlabel('S3')axis([-1,1,-1,1,-1,1]);boxoncolormap(bone);%求出射光的偏振态holdonfori=1:5000a=theta1(i);b=theta2(i);c=theta3(i);M3=Muller(a,pi/2);M2=Muller(b,pi);M1=Muller(c,pi/2);M=M3*M2*M1;O=M*I;O_1=O(2);O_2=O(3);O_3=O(4);plot3(O_1,O_2,O_3,'r*')holdonend1;偏振控制器,利用绑架球算法对QHQ型进行方位角的误差分析%已知输入输出,分析方位角误差clearclc%I=[1;0.2;0.4;0.8944];%采用斯托克斯方法输入的情况。精品资料

2______________________________________________________________________________________________________________%O=[1;0;0;1];%[I1,I2,I3]=sop_3(I);%[O1,O2,O3]=sop_3(O);%theta_in=atan(I2/I1);%theta_out=atan(O2/O1);%xi_in=asin(I3/sqrt(I1^2+I2^2+I3^2));%xi_out=asin(O3/sqrt(O1^2+O2^2+O3^2));theta_in=30*pi/180;%直接输入的情况。xi_in=45*pi/180;theta_out=135*pi/180;xi_out=22.5*pi/180;Delta_gamma=normrnd(0,0.005,1,1000);%正态分布均值为0方差为0.005Delta_alpha=normrnd(0,0.005,1,1000);Delta_beta=normrnd(0,0.005,1,1000);fori=1:1000%当波片的方位角有误差存在时,求出其所对应的偏振态theta_3=theta_out-xi_out-Delta_alpha(i)-atan(tan(xi_in)/cos(Delta_alpha(i)))+xi_in+2*Delta_beta(i);xi_3=-acos(sqrt(cos(Delta_alpha(i))*cos(Delta_alpha(i))*cos(xi_in)*cos(xi_in)+sin(xi_in)*sin(xi_in)));Delta_theta(i)=1/2*(Delta_gamma(i)+atan(tan(xi_3)/cos(theta_out+Delta_gamma(i)-theta_3)));Delta_xi(i)=1/2*(acos(sqrt(cos(theta_out+Delta_gamma(i)-theta_3)*cos(theta_out+Delta_gamma(i)-theta_3)*cos(theta_3)*cos(theta_3)+sin(theta_3)*sin(theta_3)))-xi_out);subplot(2,3,1)xlabel('\Delta\alpha/rad'),ylabel('\Delta\theta/rad'),plot(Delta_alpha(i),Delta_theta(i),'r')holdonsubplot(2,3,2)xlabel('\Delta\beta/rad'),ylabel('\Delta\theta/rad'),plot(Delta_beta(i),Delta_theta(i),'g')holdonsubplot(2,3,3)xlabel('\Delta\gamma/rad'),ylabel('\Delta\theta/rad'),plot(Delta_gamma(i),Delta_theta(i))holdonsubplot(2,3,4)精品资料

3______________________________________________________________________________________________________________xlabel('\Delta\alpha/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_alpha(i),Delta_xi(i),'r')holdonsubplot(2,3,5)xlabel('\Delta\beta/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_beta(i),Delta_xi(i),'g')holdonsubplot(2,3,6)xlabel('\Delta\gamma/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_gamma(i),Delta_xi(i))holdonend...偏振控制器,利用绑架球对QHQ型进行波长误差分析-Polarization...clearclc%I=[1;0.2;0.4;0.8944];%采用斯托克斯方法输入的情况。%O=[1;0;0;1];%[I1,I2,I3]=sop_3(I);%[O1,O2,O3]=sop_3(O);%theta_in=atan(I2/I1);%theta_out=atan(O2/O1);%xi_in=asin(I3/sqrt(I1^2+I2^2+I3^2));%xi_out=asin(O3/sqrt(O1^2+O2^2+O3^2));theta_in=30*pi/180;%直接输入的情况。xi_in=45*pi/180;theta_out=135*pi/180;xi_out=22.5*pi/180;Delta_gamma=normrnd(0,0.005,1,1000);%正态分布均值为0方差为0.005Delta_alpha=normrnd(0,0.005,1,1000);Delta_beta=normrnd(0,0.005,1,1000);fori=1:1000theta_3=theta_out-xi_out-Delta_alpha(i)-atan(tan(xi_in)/cos(Delta_alpha(i)))+xi_in+2*Delta_beta(i);xi_3=-acos(sqrt(cos(Delta_alpha(i))*cos(Delta_alpha(i))*cos(xi_in)*cos(xi_in)+sin(xi_in)*sin(xi_in)));精品资料

4______________________________________________________________________________________________________________Delta_theta=1/2*(Delta_gamma(i)+atan(tan(xi_3)/cos(theta_out+Delta_gamma(i)-theta_3)));Delta_xi=1/2*(acos(sqrt(cos(theta_out+Delta_gamma(i)-theta_3)*cos(theta_out+Delta_gamma(i)-theta_3)*cos(theta_3)*cos(theta_3)+sin(theta_3)*sin(theta_3)))-xi_out);subplot(3,2,1)xlabel('\Delta\alpha/rad'),ylabel('\Delta\theta/rad'),plot(Delta_alpha(i),Delta_theta,'r')holdonsubplot(3,2,3)xlabel('\Delta\beta/rad'),ylabel('\Delta\theta/rad'),plot(Delta_beta(i),Delta_theta,'g')holdonsubplot(3,2,5)xlabel('\Delta\gamma/rad'),ylabel('\Delta\theta/rad'),plot(Delta_gamma(i),Delta_theta)holdonsubplot(3,2,2)xlabel('\Delta\alpha/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_alpha(i),Delta_xi,'r')holdonsubplot(3,2,4)xlabel('\Delta\beta/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_beta(i),Delta_xi,'g')holdonsubplot(3,2,6)xlabel('\Delta\gamma/rad'),ylabel('\Delta\epsilon/rad'),plot(Delta_gamma(i),Delta_xi)holdonend...figure('color','k','Position',[1311280696]);axes1=axes('position',[0.20.60.30.3]);axis(axes1,'equal');axis(axes1,'off');holdonrl=1;rs=0.5;N=30;t1=linspace(0,2*pi,N);xl=rl*cos(t1);yl=rl*sin(t1);精品资料

5______________________________________________________________________________________________________________t2=linspace(0,2*pi,100);xs=rs*cos(t2);ys=rs*sin(t2);fori=1:Nplot(xl(i)+xs,yl(i)+ys);endaxes2=axes('position',[0.50.60.30.3]);axis(axes2,'equal');axis(axes2,'off');holdonrl=1;rs=1;N=30;t1=linspace(0,2*pi,N);xl=rl*cos(t1);yl=rl*sin(t1);t2=linspace(0,2*pi,100);xs=rs*cos(t2);ys=rs*sin(t2);fori=1:Nplot(xl(i)+xs,yl(i)+ys);endaxes3=axes('position',[0.350.200.30.3]);axis(axes3,'equal');axis(axes3,'off');holdonrl=1;rs=1.5;N=30;t1=linspace(0,2*pi,N);xl=rl*cos(t1);yl=rl*sin(t1);t2=linspace(0,2*pi,100);xs=rs*cos(t2);ys=rs*sin(t2);fori=1:Nplot(xl(i)+xs,yl(i)+ys);end%存脚本文件heart.m%%一个半径为R的圆周等分成N份,然后一等分点为圆心,以等分点到该圆垂直直径%%的距离为半径画圆。N=90;R=1;t0=(1:N)*2*pi/N;%%中央圆x0=R*cos(t0);y0=R*sin(t0);t1=linspace(0,2*pi,100);%运动圆精品资料

6______________________________________________________________________________________________________________X=cos(t1);Y=sin(t1);figure('color','k');holdonfori=1:Nx=x0(i)+x0(i)*X;y=y0(i)+x0(i)*Y;plot(x,y,'g');endaxisequalaxisoff精品资料

7______________________________________________________________________________________________________________WelcomeToDownload!!!欢迎您的下载,资料仅供参考!精品资料

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭