数列在生活中的应用

数列在生活中的应用

ID:8259836

大小:38.00 KB

页数:4页

时间:2018-03-14

数列在生活中的应用_第1页
数列在生活中的应用_第2页
数列在生活中的应用_第3页
数列在生活中的应用_第4页
资源描述:

《数列在生活中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、数列在生活中的应用摘要:数学是一门源于生活又用于生活的科学,数学研究是亘古以来人类社会生活中不可缺少的一部分。数列计算是数学学习中一个十分重要的分支,并且由于数列的研究与计算同社会经济、资源生活有着紧密的联系,使得对于数列研究的重视热情逐渐高涨,加之具有的灵活多变的计算,趣味横生的问题等,都使得对于数列的研究受到越来越多人的关注。关键词:数列应用分期付款资源利用众所周知,数列是数学知识中的一个重要环节,以具体问题为基础,进行答案的解析是数列学习中的一个重要部分,这就注定了数列是以解决实际问题为目的而存在的。数列在经济生活和资源计算等领域,有着广泛的使用,在解决投资分配、汇率计算、资源利

2、用分配等方面问题中有着无可比拟的优势。本文将在简述数列广泛应用的基础上,具体分析数列在以上几个生活领域中的应用情况。一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。以生活中的一个常见问题为例:在对某地超市进行统计调查后发现,每天购买甲乙两种蔬菜的人数约为200人,且第一天购买甲种蔬菜的第二天会有20%购买乙种蔬菜,第一天购买乙种蔬菜的第二天会有30%购买甲种蔬菜,则据此推算超市应当如何安排甲乙两种蔬菜的进货量。解决方案:设第n天购买甲乙两种蔬菜的人数分别为An、Bn,则:An+1=0.8An+0.3Bn;Bn+1=0.2An+

3、0.7Bn;由于An+Bn=200,则可推算得An+1=0.8An+0.3(200-An)=60+0.5An;则An+1-120=0.5(An-120);可得,{An-120}是以A1-120为首项,0.5为公比的等比数列;假设,第一天购买甲种蔬菜的有a人,则An=0.5^(n-1)*(a-120)+120当n趋近于无穷时,易得,An趋近于120且与a的值无关。则可知,购买甲种蔬菜的人数稳定在120人,购买一种蔬菜的人数稳定在80人。上述例题,以生活中常见的一类问题为原型,通过理论求解达到了解决实际问题的目的,这是数列在生活中应用的冰山一角。一、银行储蓄与分期付款中的数列应用储蓄与贷款

4、与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。设储户每期存入银行的金额为M,利率设为p,储户连续存入n期,那么到第n期期末时,本金数额为nM,在这个过程中,第一期存款利率为pMn,第二期的存款利率为PM(n-1)以此类推,到了第(n-1)期时存款利率为2pM,第n期存款利率为pM。对上述各阶段的利息求和可得:Sn=Mp+2Mp+……+Mp(n-1)+Mpn=Mp(1+2+……+

5、n-1+n)=1/2n(n+1)Mp期间,纳税金额为:1/2n(n+1)Mp*20%=1/10n(n+1)Mp最后,实际取出金额为:nA*1/2n(n+1)Mp-1/10n(n+1)Mp=M[n+2/5n(n+1)p]这是学生在练习中接触到的一种银行金融储蓄计算方式,是数列应用深入生活,影响生活方面的直接体现。随着社会经济的发展,人们的理财观念也渐渐发生了转变,小额贷款成为了社会生活中的一个热门话题。这就是数列在生活中的第二个应用。例:某客户为购买房屋,向工商银行贷款n万元,采用分期还款的方式进行偿还,共分m期偿还完毕,每一期所偿还的本金数额相同,请计算每一期应当偿还的贷款数额。设每期

6、还款x元,各期所付给的款额到贷款全部还清时不会产生利息,贷款期利率为p,则第一期应当付给本金额为n/m元,利息为np,于是:第一期总共还款金额x=n/m+np元;同理,第二期付本金n/m元,利息(n-n/m)p,第二期所偿还的总金额x=n/m+(n-n/m)p=n/m+np-n/m*p元;第三次偿还贷款总金额为x=n/m+np-n/m*2p元……以此类推,第m期x=n/m+np-n/m*(m-1)p元。对上述总金额求和得:Sn=n/m+np+n/m+np-n/m*p+n/m+np-n/m*2p……n/m+np-n/m*(m-1)p=n/m*m+np*m-[n/m*p+n/m*2p+n/

7、m*3p……n/m*(m-1)p]=n/m*m+np*m-n/m*p[1+2+3+……(m-1)]=n+mnp-n(m-1)/2另外一种较为常用的还款方式为等额本息还款法,即为:贷款n元,采用分期还款的方式进行偿还,每期还款金额相同,分m期还完,则每期应当偿还的总金额计算方式为:设每期还款x元,各期所付款额到贷款全部还清时会产生利息(利息额按期以复利进行计算),每期利率为p,则首付金额为x元;第二期付本金x元,利息xp元,第二次总付款金额为x+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。