《A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains - Rubio-s et al. - 2021 - U》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/NanoLettLetterAModular,Dynamic,DNA-BasedPlatformforRegulatingCargoDistributionandTransportbetweenLipidDomainsRogerRubio-Sánchez,SimoneEizagirreBarker,MichalWalczak,PietroCicuta,andLorenzoDiMichele*CiteThis:NanoLett.2021,21,2800−2808ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Cellmembranesregulatethedistributionofbiologicalmachinerybetweenphase-separatedlipiddomainstofacilitatekeyprocessesincludingsignalingandtransport,whichareamongthelife-likefunctionalitiesthatbottom-upsyntheticbiologyaimstoreplicateinartificial-cellularsystems.Here,weintroduceamodularapproachtoprogrampartitioningofamphiphilicDNAnanostructuresincoexistinglipiddomains.Exploitingthetendencyofdifferenthydrophobic“anchors”toenrichdifferentphases,wemodulatethelateraldistributionofourdevicesbyrationallycombininghydrophobesandbychangingnanostructuresizeandtopology.WedemonstratethefunctionalityofourstrategywithabioinspiredDNAarchitecture,whichdynamicallyundergoesligand-inducedreconfigurationtomediatecargotransportbetweendomainsvialateralredistribution.Ourfindingspavethewaytonext-generationbiomimeticplatformsforsensing,transduction,andcommunicationinsyntheticcellularsystems.KEYWORDS:DNAnanotechnology,lipidphaseseparation,lipiddomains,partitioning,artificialcells,syntheticmembranes,biomimicryiologicalmembranesarehighlyheterogeneous,containingfunctionalitiesofbiologicalinterfaces.AprecisecontroloverBupto20%oftheproteincontentofacellandfeaturingthelocalmolecularmakeupofsyntheticlipidbilayersis1,2thereforehighlydesirableandanecessarysteppingstoneforhundredsofdifferentlipidspecies.Suchadegreeofcomplexityevolvedalongsidethemyriadofbiologicalthedevelopmentofevermoresophisticatedlife-likeresponsesprocesseshostedandregulatedbymembranes,whichincludeinartificialcells.signaling,adhesion,trafficking,motility,anddivision.3ManyofDNAnanotechnologyhasdemonstratedgreatpotentialasathesefunctionalitiesrelyonlateralcolocalizationofmembranemeansofcreatingresponsivenanostructuresthatemulateproteins4requiredfortheemergenceofsignalinghubs,5,6focalbiologicalarchitecturesandfunctionalitiesandarebecomingDownloadedvia119.73.118.6onMay14,2021at06:39:03(UTC).adhesions,7andassembliesregulatingmembranearchitectureincreasinglypopularconstituentsofartificialcellularsys-89tems.33,34Inmanycases,biomimeticDNAnanostructures,topromoteendo-andexocytosisandcelldivision.Cellshaveevolvedavarietyofactiveandpassiverenderedamphiphilicbyhydrophobictags,havebeenmechanismstoregulatethelocalcompositionoftheirinterfacedtosyntheticlipidmembranestoreplicatetheSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.membranes,overcomingtheextrememolecularheterogene-responseofcell-membranemachinery.Examplesincludeity.10−12Amongthese,proteolipidphaseseparationisthoughtDNAarchitecturesmediatingartificialcelladhesionandtissue35−4142,43toplayanimportantroleinsignalingandsignaltransduction.13formation,regulatingtransport,enablingsignaltrans-4445,46duction,andtailoringmembranecurvature.Inthisprocess,nanoscaledomainsorraftsarebelievedtoImportantly,amphiphilicDNAnanostructureshavebeenemerge,richinsphingomyelinsandsterols,whichareabletodemonstratedtoundergopreferentialpartitioningwhenrecruitorexcludemembraneproteinsbasedontheirdifferent14,15anchoredtophase-separatedsyntheticbilayers,aneffectthataffinitiesforraftandnon-raftenvironments.47−49isreminiscentofmembrane-proteinpartitioninginrafts.Bottom-upsyntheticbiologyaimsatreplicatingfunction-ThepreferenceofDNAnanostructuresfordifferentlipidalitiestypicallyassociatedwithbiologicalcellsinmicrorobots16−18phasesandtheirdegreeofpartitioninghavebeenshowntodesigneddenovoor“artificialcells”.Justliketheirbiologicalcounterparts,manyartificial-celldesignsrelyonsemipermeablemembranesfortheircompartmentalizationReceived:December10,2020requirements,19−21whichcanbeconstructedfrompolymers22Revised:March3,2021andproteopolymersystems,23,24colloids25,26and,moreoften,Published:March18,202121syntheticlipidbilayers.However,withsomeremarkable27−31exceptions,reviewedinref32,themembranesofartificialcellsareoftenpassiveenclosures,lackingthecomplex©2021TheAuthors.PublishedbyAmericanChemicalSocietyhttps://doi.org/10.1021/acs.nanolett.0c048672800NanoLett.2021,21,2800−2808
1NanoLetterspubs.acs.org/NanoLettLetterdependonthechemicalidentityofthehydrophobicanchors,membranelipidcomposition,temperature,andsolvent40,50conditions.Forinstance,internarymodelmembranesof1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)/1,2-dipal-mitoyl-sn-glycero-3-phosphocholine(DPPC)/cholesteroldis-playingcoexistenceofliquidordered(Lo)andliquid1,51,52disordered(Ld)phases,DNAconstructsbearingasinglecholesteryl-tri(ethyleneglycol)(TEG)anchorshowaweakpreferenceforLo,whileduplexesend-functionalizedwithtwo53,54cholesteryl-TEGanchorspartitioninLomoreprominently.Conversely,oligonucleotidesfunctionalizedwithα-tocopherolpreferentiallylocalizewithintheLdphasesofternary1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/55,56sphingomyelin(SM)/cholesterolmembranes.Moreover,dynamiccontroloverthepartitioninghasalsobeenexemplifiedwithDNAnanodevicesthatredistributebetween57lipidphasesfollowingenzymaticcleavageorchangesinionic58strength.Theabilitytoinfluencepartitioningofmembrane-anchoredDNAconstructsmakesthempromisingtoolsforengineeringFigure1.Membrane-anchoredDNAnanostructuresdisplayprefer-themolecularmakeupandfunctionalityofartificialcellentialpartitioningbetweenthephasesofde-mixedgiantunilamellarmembranes.Yet,wehaveeffectivelyonlystartedtoscratchvesicles.(left)SchematicrepresentationofamulticomponentgiantthesurfaceofthemassivedesignspaceofamphiphilicDNAunilamellarvesicle(GUV),preparedwithsaturatedandunsaturatednanostructuresthat,alongsidethechemicalidentityofthelipidsmixedwithsterols,displayingliquid-ordered(Lo)andliquid-hydrophobes,canbefreelyengineeredwithrespecttotheirdisordered(Ld)phasecoexistence.TheouterleafletofthemembraneisfunctionalizedwithamphiphilicDNAnanostructures,exemplifiedsize,topology,andstimuliresponsiveness.herewithconstructsbearingtwocholesterolanchors,whichenrichHereweintroduceamodularplatformthatfullyexploitsthetheirpreferred(Lo)phase.(right)3Dviewofade-mixedGUVfromdesignversatilityofDNAnanotechnologytoconstruct59confocalz-stackasobtainedfromVolumeviewer(FIJI)usingnanostructureswhoseabilitytopartitioninthedomainsofmaximumprojection.DNAnanostructures(cyan)partitiontotheLophase-separatedsyntheticmembranescanbepreciselydomain,whiletheLdphase(red)islabeledwithTexasRed-DHPE.programmed.Besidesenablingstaticmembranepatterning,Scalebar=10μm.thenanodevicescanbedynamicallyreconfigureduponexposuretomolecularcues,triggeringredistributionbetweenpartitioningtendency.Försterresonanceenergytransferdomainsandunlockingsyntheticpathwaysforcargotransport,(FRET)betweenAlexa488ontheDNAandTexasRedonsignalingandmorphologicaladaptationinsyntheticcellularthelipids,alongsidefluorescent-signalcross-talk,couldinsystems.principlebiasfp,Lincertainpartitioningstates.ToruleoutthisoOurnanostructureswereconstructedfromsyntheticDNApossibility,weperformeddedicatedexperimentstodetermineoligonucleotides,someofwhichwerecovalentlylinkedtotheimpactofbothpotentialartifacts,aswellascontrolsonhydrophobicmoietiestomediateanchoringtothemembrane.GUVsthatlacktheTexasRedfluorophore,thusaltogetherFluorescenttags(Alexa488,unlessstatedotherwise)werealsoeliminatingthepossiblesourceofbias.DatainFigureS3,andincludedtomonitorthedistributionofthenanostructuresviatheassociatedSupplementaryDiscussion1,confirmthatFRETconfocalmicroscopy.AsdepictedinFigure1(left),weandfluorescencecross-talkcarryanegligibleimpactonfp,L.decoratedtheouterleafletofphase-separatedgiantunilamellarovesicles(GUVs)withtheDNAconstructs.UnlessspecifiedAssumingthattherecordedfluorescenceintensitiesareproportionaltonanostructureconcentrations,apartitioningotherwise,GUVswerepreparedfromternarylipidmixtures(DOPC/DPPC/cholestanol)todisplayLd−Locoexistence.TofreeenergycanbecalculatedasΔGp,Lo=−kBTlog(fp,Lo/fp,Ld).enablefluorescenceimaging,thevesiclesweredopedat0.8%ThelatterisdefinedasthefreeenergychangeassociatedwithmolarratiowithTexasRed-DHPE,whichpreferentiallylabelsrelocatingasingleconstructfromtheLdtotheLophase.theLdphase.Atroomtemperature,theGUVsreadilyde-mixedFirst,weappliedourdata-analysispipelineonsimpleDNAintotwomacroscopicLoandLddomains.TheresultingJanus-duplexesfeaturingwellcharacterizedsinglecholesterol-TEGlikemorphology,showninFigure1(right),enabledthefacile(sC)orsingletocopherol(sT)anchors,assummarizedinvisualizationandquantitationofthelateraldistributionoftheFigure2.Expectedly,whilesCanchorsledtoamarginalLo-preference(fsC≈0.6,ΔGsC≈−0.4kT),nanostructuresnanostructures.p,Lop,LoBTothisend,equatorialconfocalmicrographsoftheGUVsfeaturingsTstronglypartitionedinL(fsT≈0.14,ΔGsT≈dp,Lop,Lowerecollectedandanalyzedwithacustom-builtimage1.9kBT).processingpipeline,asdescribedindetailintheSI(seeImportantly,ashighlightedinFigureS4,thesizeMethods,andtheassociatedFiguresS1andS2),whichheterogeneityofelectroformedGUVsdoesnotaffectthedeterminedtheaveragefluorescenceintensitiesofthelateraldistributionofDNAanchoredspecies,asfp,Ldoesnotconstructsinthetwophases:IandI.Fromthesevalues,oLoLdcorrelatewithvesicleradius.fractionalintensitiesfp,Lo(Ld)=ILo(Ld)/(ILo+ILd)wereextracted.ThesubstantialdifferenceinthepartitioningbehaviorsThroughoutthisletter,werefertothefractionalfluorescenceinducedbysTandsCtracesaroutetoprogramlateralintensityofnanostructuresintheLophase,fp,Lo,togaugetheirdistributionbycombiningmultipleordifferenthydrophobic2801https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
2NanoLetterspubs.acs.org/NanoLettLetterFigure2.LateraldistributionofDNAnanostructuresdependsonanchorchemistryandcombination.(a)Fractionalintensity(fp,L)andfreeoenergyofpartitioning(ΔGp,Lo)ofDNAnanostructuresinLo,conveyedbybox-scatterplotsandlozengesrespectively,fortwoindividualrepeats(inblue/gray)ofDNA-decoratedGUVpopulationsfeaturingdifferentanchoringmotifs:singlecholesterol-TEG(sC),doublecholesterol-TEG(dC),singletocopherol(sT),oracombinationofsinglecholesterol-TEGandsingletocopherol(sC+sT).FordCandsC+sT,squaresindicatethepredictedfreeenergyvaluesforcombinedanchors,determinedfromeq1usingmeasuredvaluesofΔGsTandΔGsC.Thedottedlineindicatesnop,Lop,Lopartitioning(fp,Lo=0.5,ΔGp,Lo=0).(b)SchematicdepictionsofDNAduplexesbearingsC,sT,dC,orsC+sT.(c)RepresentativeconfocalmicrographsoftheDNA-functionalizedGUVs.TheLdphasewaslabeledwithTexasRed(red),andDNAconstructs(cyan)werelabeledwithAlexa488.Scalebars=10μm.moietieswithinthesamenanostructure.Withthismodularcase,anchorco-operativityandothernonadditivecontribu-“mixandmatch”approach,wecanindeedthinkofreinforcingtionsnegligiblyaffectpartitioning.partitioningineitherlipidphasebyincreasingthenumberofWhentesting“chimeric”duplexes,bearingatocopherolandcholesterolortocopherolmoietiesonournanodevices,ortoacholesterolanchor(sC+sT),weobservedapronouncedaccessintermediatepartitioningstateswithnanostructurespreferenceforLd,consistentwiththeexpectationthatfeaturingbothmoieties.tocopherolshoulddominateinviewofthestrongerfreeIntheabsenceof(anti)co-operativeeffectsandatenergyshiftassociatedwithitspartitioning(Figure2,fsC+sT≈p,Losufficientlylowconstructconcentrations,thepartitioningfree0.3).Here,thefreeenergypredictionfromeq1slightlyenergyofananostructurefeaturingmultiplehydrophobicoverestimatedthemeasuredvalueofΔGsC+sT≈0.9kTmoietiesshouldbeadditiveinthecontributionsfromp,LoB(statisticallysignificantdifference,p=8.5×10−11,usingtheindividualanchors:nonparametricMann−WhitneyWilconsonTest).Sincethis∑inonadditivebehaviorwasnotobservedforthedCconstruct,ΔGGp,Loo=Δp,Li(1)wearguethatitmayresultfromthedistinctchemicalnatureoftheanchorsinsC+sTandtheconsequentdifferencesintheirwheretheindexirunsoveralltheanchorsintheconstruct.interactionswiththesurroundinglipids.Thesimplerelationshipineq1canguidethedesignofTofurtherchallengeourmodulardesignapproach,wemultianchormotifs,andinFigure2,wetesteditonaduplexstudiedthepartitioningbehavioroftheconstructsinFigure2featuringtwocholesterol-TEGanchors(dC).Asexpected,theinaquaternarylipidmixture(DOPC/DPPC/cholestanol/dCmotifdisplayedanenhancedpreferenceforLodomainscardiolipin).Whilethismorecomplexmixturestilldisplayed40,53dCcomparedtosC,withfp,L≈0.7.ThemeasuredoLo−Ldphasecoexistence,theincorporationofthehighlypartitioningfreeenergywasΔGdC≈−0.8kT,nearlyidenticalp,LoBunsaturatedcardiolipinhasbeenshowntoenhanceLo-totwicethatofsCnanostructures.Thisquantitativeagreementpartitioning,owingtotheincreasedlateralstressintheLd40withthepredictionofeq1suggeststhat,atleastinthisspecificphase.Thedata,summarizedinFigureS5,largelyconfirmed2802https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
3NanoLetterspubs.acs.org/NanoLettLetterFigure3.AnchorcouplingandconstructtopologymodulateDNAnanostructurepartitioning.(a,top)TunablelateralsegregationofDNAarchitecturesattainedbycouplingtwosetsofanchors:dC+dCandsT+dC.Thepartitioningbehaviorisdemonstratedbythefractionalintensity(fp,Lo,box-scatterplots)andfreeenergyofpartitioning(ΔGp,Lo,lozenges)inLo.Squaresindicatethepredictedfreeenergyvaluesforcombinedanchors,determinedfromeq1usingmeasuredvaluesofΔGsTandΔGsC(Figure2).(a,bottom)Schematicrepresentationsofthenanostructuresp,Lop,LoandrepresentativeconfocalmicrographsofdecoratedGUVs.(b,top)Effectofnanostructuresizeonpartitioning,shownviafp,Lbox-scatterplotsoofDNAnanostarsbearingsingletocopherol(sT)ordouble-cholesterol(dC)anchors,comparedagainstthemeanfp,Lachievedbytheirduplexocounterparts(dashedlines,redfordC,blueforsT).(b,bottom)DepictionofDNAnanostarsalongsiderepresentativeconfocalmicrographsofDNA-decoratedGUVs.Inplotsinbothpanelsaandb,thedottedlineindicatesnopartitioning(fp,Lo=0.5,ΔGp,Lo=0).TheLdphasewaslabeledwithTexasRed(red),andconstructs(cyan)werelabeledwithAlexa488(DNA−DNAcomplexes)orfluorescein(nanostars).Scalebars=10μm.thepredictivepowerofeq1,butsomenonadditivedeviations+dCconstruct,asexpected,displaysaverystrongLoarehighlighted.Specifically,weobservedthatapplyingtherulepreference,withΔGdC+dC≈−1.4kTandfdC+dC≈0.8.p,LoBp,Loineq1ledtoanoverestimationofthenanostructures’SimilarlytothecaseofthesC+sTconstructs,thepartitioningtendencytolocalizewithintheLoforbothdCandsC+sTofsT+dCnanostructureswasdominatedbythestrongLdmotifs.Thedifferenceinmagnitudebetweennonadditivefreepreferenceofthetocopherol,withΔGsT+dC≈1kTandfsT+dCp,LoBp,Loenergytermsobservedforternaryandquaternarylipid≈0.26.compositionsisonlypartiallysurprising,asonewouldexpectDespitetheremarkableaccuracyofeq1inpredicting(anti)co-operativeeffectstobehighlysensitivetothelipidpartitioningstatesinmultianchorconstructs,wehighlightedmicroenvironmentoftheanchors.Forinstance,onemaynonadditivedeviations.Whilesomeoftheseappeartospeculatethatthecardiolipin-richLdphaseinthequaternarycorrelatewiththedetailsofanchorandlipidchemistry(sC-mixturemaybebetterabletoaccommodatelargerinclusionssTinFigure2andFigureS5)andarethusdifficulttocontrol,likethosegeneratedbytwo-anchormotifs(dC,sC+sT),whichothernonadditivecontributionscanpotentiallybeexploitedto40mayinturnhelptorelaxthebuilt-inlateralstress.Thisfine-tunepartitioningstatesaroundthebaselinedefinedbyphenomenonmayleadtoalesspronouncedLopreferenceforanchorcombination.Forinstance,theuseoflargerandmoretwo-anchorcomparedtosingle-anchorconstructs.complexnanostructuresmayinfluencelateralsegregationThankstothedesignfreedomofDNAnanotechnology,ourowingtostericorelectrostaticinteractionsbetweenthemotifs.modularstrategyisnotrestrictedtosimplemotifswithoneorOnemayindeedexpectthat,forlargernanostructures,twoanchors.WecanindeedregardtheduplexconstructsinexcludedvolumeeffectsmayhinderaccumulationinoneFigure2as“anchoringmodules”andfurthercombinetheminspecificphase,thussuppressingpartitioning.Figure3blargernanostructurestoexpandtherangeofaccessiblesummarizesthepartitioningbehaviorofthree-pointedDNApartitioningstates.Forinstance,asschematicallydepictedinnanostarsanchoredtothebilayersusingdCandsTmodules.Figure3,twoanchoringmoduleswerecoupledbysimplyThesemotifshadroughly4×themolecularweightoftheconnectingthemwithatransversal,fluorescentlylabeledlinkersmallerduplexarchitecturesinFigure2and,indeed,duplex.Foraddedconformationalflexibility,3-ntsingle-systematicallydisplayedareducedpartitioningtendency.stranded(ss)DNAdomains(αinFigure3)wereincludedMoreover,FigureS6provesthattheeffectisnotuniquetobetweenthehydrophobicallymodifiedandlinkerduplexes.thebranchednanostructures,aslinearduplexesanchoredviaTwomodularcombinationswereinvestigated:dC+dCanddCalsoshowedageneralweakeninginpartitioningwithsT+dC.Notably,forbothdesigns,themeasuredpartitioningincreasinglength.Infurthersupporttothehypothesisthatfreeenergiescouldbequantitativelypredictedbyaddingupstericnanostructure−nanostructureinteractionsmayhaveanthecontributionsoftheindividualanchormodules.ThedCeffectonpartitioning,weperformedmeasurementsforsmaller2803https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
4NanoLetterspubs.acs.org/NanoLettLetterFigure4.Toehold-mediatedstranddisplacementenablescargotransportbetweenlipiddomainsvialateralredistributiontoprogrammedpartitionedstates:(a)SchematicdepictionofthemechanismunderpinningDNAnanostructuredimerizationandcargoredistributioninducedbytheadditionofFuel/Antifuelstrands,whichexploitdomainsδ1,α1,δ2,andα2astoeholds.Thecorrectresponseofthemolecularcircuitwastestedwithagarosegelelectrophoresis,assummarizedinFigureS8.(b)EvolutionofthepartitioningtendencyofthefluorescentDNAelement(panela),conveyedbyfp,Lbox-scatterplots,afteradelaytimeforequilibrationupontheadditionofFuel/Antifuelstrands.Thelightbluedashedlinemarksothemeanfp,LofthecargohybridizedtothesT-bearingmoduleandintheabsenceofthedC-anchoringmodule,whilethereddash-dotlinemarksothatofthecargohybridizedtothedC-bearingmoduleandintheabsenceofthesTanchoringmodule.Thedottedlineindicatesnopartitioning(fp,Lo=0.5,ΔGp,Lo=0).(c)RepresentativeconfocalmicrographsofDNA-functionalizedGUVsovertime,showcasingthedistinctpartitionedstatesattainedbythesystem.TheLdphasewaslabeledwithTexasRed(red),andDNAconstructswerelabeledwithAlexa488(cyan).Scalebars=10μm.dCandsTduplexesoverawiderangeof(nominal)DNA-to-largerconcentrationofsolubilizedconstructs,effectivelylipidmolarratiosandthusofsurfacedensitiesofthemotifs,asreducingthesurfacedensityatfixedDNA/lipidratios.summarizedinFigureS7.Weobservedanearstationaryfp,LOurabilitytoprogramthedomainpartitioningofDNAoconstructsbylinkingdifferentanchoringmodules,asoverabroadrangeofDNA/lipidratiosaroundthevalueuseddemonstratedinFigure3,canbecombinedwiththedynamicforallotherexperimentsthroughoutthiswork(∼4×10−4).reconfigurabilityofDNAnanostructurestoreversiblytriggerForbothdCandsTconstructs,however,fp,LostronglydeviatedredistributionofafluorescentcargowithintheGUVs’surfacesathighDNA/lipidratios,approaching∼0.5.Suchadeviationuponexposuretomolecularcues.WedemonstratethiseffecthintsatasaturationoftheLoandLdphasesandthewithananostructurefeaturingbothdCandsTanchoringmodules,similartothatshowninFigure3butinwhichtheconsequentimpossibilityforthenanostructurestofurtherfluorescentdsDNAlinkermodule(cargo)connectingtheaccumulateinthosedomains.SaturationoccurredathigheranchorduplexescanreversiblybindtoordetachfromeitherDNA/lipidratiosforsTcomparedtodC,andwearguethat61viatoehold-mediatedstranddisplacement,amechanismthatthisdifferencemayarisefromdifferencesintheoverallisreminiscentoftwo-componentbiologicalreceptorsunder-membraneaffinityoftheanchors.Indeed,whiledCmembranegoingligand-induceddimerization.5,6AssketchedinFigure4a,60insertioniseffectivelyirreversible,anchoringviasTmaybeweinitiatedoursystemfromaconfigurationinwhichtheweakersothatmembrane-anchoredsTduplexescoexistwithafluorescentcargowasattachedtothesTanchorandthus2804https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
5NanoLetterspubs.acs.org/NanoLettLetterFigure5.Staticanddynamicengineeringofpartitioningstatesacrossthefree-energylandscapebyprescribinganchorcombinationandnanostructuremorphology.(a)Summarygraphdemonstratingthemeanfp,L±standarddeviationsofseveralmembrane-associatedDNAonanostructuresasafunctionoftheirmeasuredfreeenergyofpartitioning(ΔGp,L).Theeffectofanchorcoupling,size,andgeometryisshowcased.oArrowsconnectprogrammedpartitionedstatesachievedbytheresponsivenanodevicediscussedinFigure4.(b)PartitioningfreeenergyofDNAnanostructuresistoagoodapproximationadditiveincontributionsfromindividualanchoringmotifs,asshownforseveralmultianchornanostructureswiththemean±standarddeviationsofmeasuredΔGp,Lvsthosepredictedwitheq1.olocalizedintheLdphase(State1).Here,thefluorescentlinkerlikelylimitedbythediffusionofthefuelstrandthroughthemodulewaspreventedfromconnectingtothedCanchoringsample,giventhat,inordertopreventGUVdriftandmoduleasitsdomainγ*1,complementarytoγ1onthedCdisruption,thefuelsolutionisgentlyaddedfromthesamplemodule,wasprotectedbyanAntifuel1strandofdomainsurfacewithoutanyactivemixing.Theratesoftoehold-sequenceδ1γ1α*1.Notethatthefp,Lovaluerecordedinthismediatedstranddisplacementanddiffusionofthemembrane-configurationmatchedexactlytheonemeasuredifthedCanchoredconstructsareexpectedtobecomparativelyfastermodulewasabsentfromthebilayer,markedbyadashedline(seediscussioninthecaptionofFigureS9).TheredistributioninFigure4b,thusconfirmingtheabsenceofbindingtothedCrecordedforournanodevicesiscomparabletothoseofmodule.Antifuel1couldbedisplaceduponadditionofFuel1,biologicalmembrane-anchoredagentsinvolved,forexample,in63leadingtotheexposureofγ*1onthelinkermoduleanditstherecruitmentofreceptorsuponT-cellactivationor8,64bindingtothedCmodule.Uponacquiringthisconfiguration,clathrin-mediatedendocytosis,bothofwhichrangebetweentensandhundredsofseconds.Finally,notethatState2,thenanostructuresshiftedthecargotowardLo.AdditionofAntifuel2,withsequenceα*2γ2δ2,triggeredtheStates1and3displayedalowertendencytopartitioninLddisplacementofthelinkerfromthesTmodulefollowingaandLo(respectively)comparedtotheirsTanddCduplexanalogues(Figure2).Theshiftislikelyaconsequenceofthetoeholdingreactioninitiatedatdomainα2,leadingtothegreaterstericencumbranceoftheresponsivemotifs,discussedemergenceofState3andafurthercargoredistributiontowardabovewithrespecttoFigure3andFigureS6.theLophase.Alsointhisconfiguration,thefp,LovaluealignedInsummary,weintroducedamodularapproachtoengineertothatmeasuredintheabsenceofsTanchors,indicatingathelateraldistributionofamphiphilicDNAnanostructuresnear-completeprogressionofthetoeholdingreaction(dot-betweencoexistingphasesofsyntheticmembranes.WedashlineinFigure4b).Finally,sequentialadditionofFuel2exploitedtheabilityofindividualcholesterolandtocopherolandAntifuel1couldreversethesystems’configurationtoStatesanchorstoinducepartitioninginLoandLd,respectively,and2andthen1.Thelasttwostepspushedthefluorescentcargocombinedthemtoproduceanarrayofmultianchornano-backtowarditsinitialLdpreference,butthefp,Lovaluesdevicesthatspanabroadrangeofpartitioningbehaviorsfromremainedslightlyhigherthanthoserecordedatfirst.This∼80%preferenceforLoto∼85%partitioninginLd,asincompletereversibilitymaybeduetopartialinefficienciesinsummarizedinFigure5a.Thecomparisonbetweenmeasured62thereversetoeholdingreactionsortoasmallthermodynamicpartitioningfreeenergiesandthoseextractedfromeq1,shownunbalancethatfavorsState3overState1.NotethatthesysteminFigure5b,provesthattoagoodapproximationΔGp,Lisowasallowedtofullyequilibrateaftertheadditionoffuel/additiveinthecontributionsfromindividualanchors,thusantifuelstrandspriortocollectingthedatainFigure4,asofferingapredictivedesigncriterion.Small,nonadditiveeffectsdemonstratedbythemeasurementsacquiredatintermediatecontributetoadifferentextentdependingonanchortimepointsandshowninFigureS9a.Inturn,FigureS9bcombinationsandlipid-membranecomposition,hintingatshowsthetimeevolutionoffp,LoforanindividualGUV,in(anti)co-operativeeffectsdependentonsystem-specificwhichthenanostructurestransitionfromState1toState2chemistry,whileexcluded-volumeeffectsemergedforbulkieruponfueladdition.Theequilibrationtimescalesof∼5minaremotifsandhighernanostructureconcentrations.2805https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
6NanoLetterspubs.acs.org/NanoLettLetterThemodularityofourdesignstrategyenablesdynamicW120BZ,UnitedKingdom;orcid.org/0000-0002-1458-controloverthepartitioningstatebyalteringtheanchor9747;Email:l.di-michele@imperial.ac.ukmakeupofthenanostructures,asweshowedwithaproof-of-conceptexperimentinwhichfluorescentcargoeswereAuthorsreversiblytransportedacrossvesiclesurfacesuponexposureRogerRubio-Sánchez−BiologicalandSoftSystems,tomolecularcues.ThisstrategyevokesthatusedbycellstoCavendishLaboratory,UniversityofCambridge,Cambridgecontrolspatiotemporallocalizationofmembranepro-CB30HE,UnitedKingdom;orcid.org/0000-0001-5574-teins47−49,65andcanbefurtherextendedtorespondtoother5809physico-chemicaltriggersbyincludingstimuli-sensitivemotifsSimoneEizagirreBarker−BiologicalandSoftSystems,suchasaptamers,66DNAzymes,67G-quadruplexes,68pH-CavendishLaboratory,UniversityofCambridge,Cambridgeresponsivemotifs,69andotherfunctionalDNAarchitec-CB30HE,UnitedKingdom;orcid.org/0000-0001-8920-tures.70,710428OurapproachcouldbeeasilyextendedtoincludemoietiesMichalWalczak−BiologicalandSoftSystems,Cavendishotherthancholesterolandtocopherol,suchasalkylchains,40Laboratory,UniversityofCambridge,CambridgeCB30HE,porphyrin,72andazobenzene,73whichbesidesunlockingaUnitedKingdombroaderrangeofpartitioningstatesmayalsoenablePietroCicuta−BiologicalandSoftSystems,Cavendishresponsivenesstoawiderspectrumofstimuli.SimilardesignLaboratory,UniversityofCambridge,CambridgeCB30HE,principlescouldevenbeappliedtomembrane-associatedUnitedKingdom;orcid.org/0000-0002-9193-8496entitiesdifferentfrom(amphiphilic)DNAnanostructures,Completecontactinformationisavailableat:suchasperipheralandintegralproteins,toprogramtheirhttps://pubs.acs.org/10.1021/acs.nanolett.0c0486774,75colocalizationinmembranedomains.Ourplatformpavesthewayforthedevelopmentofnext-NotesgenerationbiomimeticDNAdevicesforthebottom-upTheauthorsdeclarenocompetingfinancialinterest.engineeringoflife-likebehaviorsinsyntheticcellularsystems,whichcouldinthelongtermfindapplicationinhigh-tech■ACKNOWLEDGMENTStherapeuticsanddiagnosticsolutions.Forinstance,thestimuli-R.R.S.acknowledgessupportfromtheMexicanNationaltriggeredreshufflingofmembrane-boundobjectsbetweenlipidCouncilforScienceandTechnology(CONACYT,GrantNo.phasescanenablehighlysoughtbehaviorssuchassignal472427)andtheCambridgeTrust.R.R.S.andS.E.B.also45transduction,communication,andlocalmembranesculpting.acknowledgefundingfromtheEPSRCCDTinNanoscienceExamplesincludestimuli-inducedcolocalizationofsyntheticandNanotechnology(NanoDTC,GrantNo.EP/L015978/144receptorsinitiatingartificialsignalingcascadesandherdingofandEP/S022953/1,respectively).L.D.M.acknowledgesobjectscapableofinfluencinglocalmembranecurvature,thusfundingfromaRoyalSocietyUniversityResearchFellowship76directingmorphologicalrestructuringsuchastubulargrowth(UF160152)andfromtheEuropeanResearchCouncil(ERC)46,77,78andexosome/endosomebudding.undertheHorizon2020ResearchandInnovationProgramme(ERC-STGNo851667NANOCELL).TheauthorsthankB.■ASSOCIATEDCONTENTM.Mognettifordiscussionsontheproject,andD.Morzyfor*sıSupportingInformationcommentsonthemanuscript.AlldatainsupportofthisworkTheSupportingInformationisavailablefreeofchargeatcanbeaccessedfreeofchargeathttps://doi.org/10.17863/https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04867.CAM.64579.Experimentalmethods,discussionofimpactoffluo-■rescencecross-talkandFRET,imageanalysispipelineREFERENCESformeasuringDNA-constructfluorescenceintensityin(1)Heberle,F.A.;Feigenson,G.W.PhaseSeparationinLipidequatorialconfocalmicrographs,circlefittingroutinetoMembranes.ColdSpringHarborPerspectivesinBiology2011,3,No.a004630.correctforimperfectsegmentationoflowintensity(2)Lorent,J.H.;Levental,K.R.;Ganesan,L.;Rivera-Longsworth,equatorialmembranedomains,impactoffluorescentG.;Sezgin,E.;Doktorova,M.;Lyman,E.;Levental,I.PlasmalipidmarkerandGUVpolydisperityonpartitioningmembranesareasymmetricinlipidunsaturation,packingandproteintendency,lateraldistributionofduplexDNAnanostruc-shape.Nat.Chem.Biol.2020,16,644−652.turesinquaternary(DOPC/DPPC/cardiolipin/chol)(3)Alberts,B.Molecularbiologyofthecell,6thed.;GarlandyScience:GUVs,lateraldistributionofDNAnanostructuresofNewYork,2017.increasingmolecularweight,suppressionofpartitioning(4)Sezgin,E.;Levental,I.;Mayor,S.;Eggeling,C.ThemysteryofbyhighDNA/lipidratioduetomembranesaturation,membraneorganization:composition,regulationandrolesoflipidDNAnanostructurereconfigurabilityviatoeholdingrafts.Nat.Rev.Mol.CellBiol.2017,18,361−374.reactions,DNAnanostructurereconfigurationand(5)Akira,S.;Takeda,K.Toll-likereceptorsignalling.Nat.Rev.Immunol.2004,4,499.redistribution,andDNAsequencesofthenanostruc-(6)Schlessinger,J.ReceptorTyrosineKinases:LegacyoftheFirstturesusedthroughoutthiswork(PDF)TwoDecades.ColdSpringHarborPerspect.Biol.2014,6,No.a008912.■(7)Acebrón,I.;etal.StructuralbasisofFocalAdhesionKinaseAUTHORINFORMATIONactivationonlipidmembranes.EMBOJournal2020,39,No.e104743.CorrespondingAuthor(8)Haucke,V.;Kozlov,M.M.Membraneremodelinginclathrin-LorenzoDiMichele−BiologicalandSoftSystems,Cavendishmediatedendocytosis.J.CellSci.2018,131,No.jcs216812.Laboratory,UniversityofCambridge,CambridgeCB30HE,(9)Stoten,C.L.;Carlton,J.G.ESCRT-dependentcontrolofUnitedKingdom;MolecularSciencesResearchHub,membraneremodellingduringcelldivision.Semin.CellDev.Biol.DepartmentofChemistry,ImperialCollegeLondon,London2018,74,50−65.2806https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
7NanoLetterspubs.acs.org/NanoLettLetter(10)Veatch,S.L.;Cicuta,P.InCriticalLipidomics:TheConsequences(30)Hindley,J.W.;Elani,Y.;McGilvery,C.M.;Ali,S.;Bevan,C.L.;ofLipidMiscibilityinBiologicalMembranesBT-PhysicsofBiologicalLaw,R.V.;Ces,O.Light-triggeredenzymaticreactionsinnestedMembranes;Bassereau,P.,Sens,P.,Eds.;SpringerInternationalvesiclereactors.Nat.Commun.2018,9,1093.Publishing:Cham,2018;pp141−168.(31)Lee,K.Y.;Park,S.-J.;Lee,K.A.;Kim,S.-H.;Kim,H.;Meroz,(11)McMahon,H.T.;Gallop,J.L.MembranecurvatureandY.;Mahadevan,L.;Jung,K.-H.;Ahn,T.K.;Parker,K.K.;Shin,K.mechanismsofdynamiccellmembraneremodelling.Nature2005,PhotosyntheticartificialorganellessustainandcontrolATP-depend-438,590−596.entreactionsinaprotocellularsystem.Nat.Biotechnol.2018,36,(12)Baumgart,T.;Capraro,B.R.;Zhu,C.;Das,S.L.530−535.ThermodynamicsandMechanicsofMembraneCurvatureGeneration(32)Hindley,J.W.;Law,R.V.;Ces,O.MembranefunctionalizationandSensingbyProteinsandLipids.Annu.Rev.Phys.Chem.2011,62,inartificialcellengineering.SNAppliedSciences2020,2,593.483−506.(33)Seeman,N.C.;Sleiman,H.F.DNAnanotechnology.Nature(13)Pike,L.J.Lipidrafts:bringingordertochaos.J.LipidRes.ReviewsMaterials2018,3,17068.2003,44,655−667.(34)Zhao,N.;Chen,Y.;Chen,G.;Xiao,Z.ArtificialCellsBasedon(14)Pralle,A.;Keller,P.;Florin,E.-L.;Simons,K.;Hörber,J.K.H.DNANanotechnology.ACSAppliedBioMaterials2020,3,3928−Sphingolipid-CholesterolRaftsDiffuseasSmallEntitiesinthePlasma3934.MembraneofMammalianCells.J.CellBiol.2000,148,997−1008.(35)Mognetti,B.M.;Cicuta,P.;DiMichele,L.Programmable(15)Lingwood,D.;Simons,K.LipidRaftsAsaMembrane-interactionswithbiomimeticDNAlinkersatfluidmembranesandOrganizingPrinciple.Science2010,327,46−50.interfaces.Rep.Prog.Phys.2019,82,116601.(16)Buddingh’,B.C.;vanHest,J.C.M.ArtificialCells:Synthetic(36)Amjad,O.A.;Mognetti,B.M.;Cicuta,P.;DiMichele,L.CompartmentswithLife-likeFunctionalityandAdaptivity.Acc.Chem.MembraneAdhesionthroughBridgingbyMultimericLigands.Res.2017,50,769−777.Langmuir2017,33,1139−1146.(17)Noireaux,V.;Libchaber,A.Avesiclebioreactorasastep(37)Bachmann,S.J.;Kotar,J.;Parolini,L.;Šaric,A.;Cicuta,P.;Dítowardanartificialcellassembly.Proc.Natl.Acad.Sci.U.S.A.2004,Michele,L.;Mognetti,B.M.MeltingtransitioninlipidvesiclesfunctionalisedbymobileDNAlinkers.SoftMatter2016,12,7804−101,17669−17674.(18)Noireaux,V.;Maeda,Y.T.;Libchaber,A.Developmentofan7817.(38)Parolini,L.;Mognetti,B.M.;Kotar,J.;Eiser,E.;Cicuta,P.;Diartificialcell,fromself-organizationtocomputationandself-Michele,L.Volumeandporositythermalregulationinlipidreproduction.Proc.Natl.Acad.Sci.U.S.A.2011,108,3473−3480.mesophasesbycouplingmobileligandstosoftmembranes.Nat.(19)Elani,Y.Constructionofmembrane-boundartificialcellsusingCommun.2015,6,5948.microfluidics:anewfrontierinbottom-upsyntheticbiology.Biochem.(39)Parolini,L.;Kotar,J.;DiMichele,L.;Mognetti,B.M.Soc.Trans.2016,44,723−730.ControllingSelf-AssemblyKineticsofDNA-FunctionalizedLip-(20)Karamdad,K.;Hindley,J.W.;Bolognesi,G.;Friddin,M.S.;osomesUsingToeholdExchangeMechanism.ACSNano2016,10,Law,R.V.;Brooks,N.J.;Ces,O.;Elani,Y.Engineering2392−2398.thermoresponsivephaseseparatedvesiclesformedviaemulsion(40)Beales,P.A.;Nam,J.;Vanderlick,T.K.Specificadhesionphasetransferasacontent-releaseplatform.ChemicalScience2018,betweenDNA-functionalized“Janus”vesicles:size-limitedclusters.9,4851−4858.SoftMatter2011,7,1747−1755.(21)Trantidou,T.;Friddin,M.;Elani,Y.;Brooks,N.J.;Law,R.V.;(41)Beales,P.A.;Vanderlick,T.K.DNAasMembrane-BoundSeddon,J.M.;Ces,O.EngineeringCompartmentalizedBiomimeticLigand-ReceptorPairs:DuplexStabilityIsTunedbyIntermembraneMicro-andNanocontainers.ACSNano2017,11,6549−6565.Forces.Biophys.J.2009,96,1554−1565.(22)Choi,H.-J.;Brooks,E.;Montemagno,C.D.Synthesisand(42)Burns,J.R.;Seifert,A.;Fertig,N.;Howorka,S.AbiomimeticcharacterizationofnanoscalebiomimeticpolymervesiclesandDNA-basedchannelfortheligand-controlledtransportofchargedpolymermembranesforbioelectronicapplications.Nanotechnologymolecularcargoacrossabiologicalmembrane.Nat.Nanotechnol.2005,16,S143−S149.2016,11,152.(23)Joesaar,A.;Yang,S.;Bögels,B.;vanderLinden,A.;Pieters,P.;(43)Göpfrich,K.;Li,C.-Y.;Mames,I.;Bhamidimarri,S.P.;Ricci,Kumar,B.V.V.S.P.;Dalchau,N.;Phillips,A.;Mann,S.;deGreef,T.M.;Yoo,J.;Mames,A.;Ohmann,A.;Winterhalter,M.;Stulz,E.;F.A.DNA-basedcommunicationinpopulationsofsyntheticAksimentiev,A.;Keyser,U.F.IonChannelsMadefromaSingleprotocells.Nat.Nanotechnol.2019,14,369−378.Membrane-SpanningDNADuplex.NanoLett.2016,16,4665−4669.(24)Ugrinic,M.;Zambrano,A.;Berger,S.;Mann,S.;Tang,T.-Y.(44)Kaufhold,W.T.;Brady,R.A.;Tuffnell,J.M.;Cicuta,P.;DiD.;DeMello,A.Microfluidicformationofproteinosomes.Chem.Michele,L.MembraneScaffoldsEnhancetheResponsivenessandCommun.2018,54,287−290.StabilityofDNA-BasedSensingCircuits.BioconjugateChem.2019,(25)Li,M.;Harbron,R.L.;Weaver,J.V.M.;Binks,B.P.;Mann,S.30,1850−1859.Electrostaticallygatedmembranepermeabilityininorganicprotocells.(45)Franquelim,H.G.;Khmelinskaia,A.;Sobczak,J.-P.;Dietz,H.;Nat.Chem.2013,5,529−536.Schwille,P.MembranesculptingbycurvedDNAorigamiscaffolds.(26)Li,M.;Green,D.C.;Anderson,J.L.R.;Binks,B.P.;Mann,S.Nat.Commun.2018,9,811.Invitrogeneexpressionandenzymecatalysisinbio-inorganic(46)Journot,C.M.A.;Ramakrishna,V.;Wallace,M.I.;Turberfield,protocells.Chem.Sci.2011,2,1739−1745.A.J.ModifyingMembraneMorphologyandInteractionswithDNA(27)Hindley,J.W.;Zheleva,D.G.;Elani,Y.;Charalambous,K.;OrigamiClathrin-MimicNetworks.ACSNano2019,13,9973−9979.Barter,L.M.C.;Booth,P.J.;Bevan,C.L.;Law,R.V.;Ces,O.(47)Wang,T.-Y.;Leventis,R.;Silvius,J.R.PartitioningofLipidatedBuildingasyntheticmechanosensitivesignalingpathwayinPeptideSequencesintoLiquid-OrderedLipidDomainsinModelandcompartmentalizedartificialcells.Proc.Natl.Acad.Sci.U.S.A.BiologicalMembranes.Biochemistry2001,40,13031−13040.2019,116,16711−16716.(48)Weise,K.;Triola,G.;Janosch,S.;Waldmann,H.;Winter,R.(28)Altamura,E.;Milano,F.;Tangorra,R.R.;Trotta,M.;Omar,O.Visualizingassociationoflipidatedsignalingproteinsinheteroge-H.;Stano,P.;Mavelli,F.HighlyorientedphotosyntheticreactionneousmembranesPartitioningintosubdomains,lipidsorting,centersgenerateaprotongradientinsyntheticprotocells.Proc.Natl.interfacialadsorption,andproteinassociation.Biochim.Biophys.Acad.Sci.U.S.A.2017,114,3837−3842.Acta,Biomembr.2010,1798,1409−1417.(29)Litschel,T.;Ramm,B.;Maas,R.;Heymann,M.;Schwille,P.(49)Weise,K.;Kapoor,S.;Denter,C.;Nikolaus,J.;Opitz,N.;Koch,BeatingVesicles:EncapsulatedProteinOscillationsCauseDynamicS.;Triola,G.;Herrmann,A.;Waldmann,H.;Winter,R.Membrane-MembraneDeformations.Angew.Chem.,Int.Ed.2018,57,16286−MediatedInductionandSortingofK-RasMicrodomainSignaling16290.Platforms.J.Am.Chem.Soc.2011,133,880−887.2807https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
8NanoLetterspubs.acs.org/NanoLettLetter(50)Beales,P.A.;Vanderlick,T.K.Applicationofnucleicacid-lipid(71)LeVay,K.;Salibi,E.;Song,E.Y.;Mutschler,H.NucleicAcidconjugatesfortheprogrammableorganisationofliposomalmodules.CatalysisunderPotentialPrebioticConditions.Chem.-AsianJ.2020,Adv.ColloidInterfaceSci.2014,207,290−305.15,214−230.(51)Veatch,S.L.;Keller,S.L.SeparationofLiquidPhasesinGiant(72)Burns,J.R.;Göpfrich,K.;Wood,J.W.;Thacker,V.V.;Stulz,VesiclesofTernaryMixturesofPhospholipidsandCholesterol.E.;Keyser,U.F.;Howorka,S.Lipid-Bilayer-SpanningDNABiophys.J.2003,85,3074−3083.NanoporeswithaBifunctionalPorphyrinAnchor.Angew.Chem.,(52)Veatch,S.L.;Keller,S.L.MiscibilityPhaseDiagramsofGiantInt.Ed.2013,52,12069−12072.VesiclesContainingSphingomyelin.Phys.Rev.Lett.2005,94,148101.(73)Hernández-Ainsa,S.;Ricci,M.;Hilton,L.;Aviñó,A.;Eritja,R.;(53)Beales,P.A.;Vanderlick,T.K.PartitioningofMembrane-Keyser,U.F.ControllingtheReversibleAssemblyofLiposomesAnchoredDNAbetweenCoexistingLipidPhases.J.Phys.Chem.BthroughaMultistimuliResponsiveAnchoredDNA.NanoLett.2016,2009,113,13678−13686.16,4462−4466.(54)Talbot,E.L.;Parolini,L.;Kotar,J.;DiMichele,L.;Cicuta,P.(74)Lorent,J.H.;Diaz-Rohrer,B.;Lin,X.;Spring,K.;Gorfe,A.A.;Thermal-drivendomainandcargotransportinlipidmembranes.Proc.Levental,K.R.;Levental,I.StructuraldeterminantsandfunctionalNatl.Acad.Sci.U.S.A.2017,114,846−851.consequencesofproteinaffinityformembranerafts.Nat.Commun.(55)Bunge,A.;Kurz,A.;Windeck,A.-K.;Korte,T.;Flasche,W.;2017,8,1219.(75)Lin,X.;Gorfe,A.A.;Levental,I.ProteinPartitioningintoLiebscher,J.;Herrmann,A.;Huster,D.LipophilicOligonucleotidesOrderedMembraneDomains:InsightsfromSimulations.Biophys.J.SpontaneouslyInsertintoLipidMembranes,BindComplementary2018,114,1936−1944.DNAStrands,andSequesterintoLipid-DisorderedDomains.(76)Talbot,E.L.;Kotar,J.;DiMichele,L.;Cicuta,P.DirectedLangmuir2007,23,4455−4464.tubulegrowthfromgiantunilamellarvesiclesinathermalgradient.(56)Kurz,A.;Bunge,A.;Windeck,A.-K.;Rost,M.;Flasche,W.;SoftMatter2019,15,1676−1683.Arbuzova,A.;Strohbach,D.;Müller,S.;Liebscher,J.;Huster,D.;(77)Booth,A.;Marklew,C.J.;Ciani,B.;Beales,P.A.InVitroHerrmann,A.Lipid-AnchoredOligonucleotidesforStableDouble-MembraneRemodelingbyESCRTisRegulatedbyNegativeHelixFormationinDistinctMembraneDomains.Angew.Chem.,Int.FeedbackfromMembraneTension.iScience2019,15,173−184.Ed.2006,45,4440−4444.(78)Booth,A.;Marklew,C.;Ciani,B.;Beales,P.A.Theinfluenceof(57)Schade,M.;Knoll,A.;Vogel,A.;Seitz,O.;Liebscher,J.;Huster,phosphatidylserinelocalisationandlipidphaseonmembraneD.;Herrmann,A.;Arbuzova,A.RemoteControlofLipophilicremodellingbytheESCRT-II/ESCRT-IIIcomplex.FaradayDiscuss.NucleicAcidsDomainPartitioningbyDNAHybridizationand2020,DOI:10.1039/D0FD00042F.EnzymaticCleavage.J.Am.Chem.Soc.2012,134,20490−20497.(58)Czogalla,A.;Petrov,E.P.;Kauert,D.J.;Uzunova,V.;Zhang,Y.;Seidel,R.;Schwille,P.SwitchabledomainpartitioninganddiffusionofDNAorigamirodsonmembranes.FaradayDiscuss.2013,161,31−43.(59)Schindelin,J.;etal.Fiji:anopen-sourceplatformforbiological-imageanalysis.Nat.Methods2012,9,676−682.(60)Pfeiffer,I.;Höök,F.BivalentCholesterol-BasedCouplingofOligonucletidestoLipidMembraneAssemblies.J.Am.Chem.Soc.2004,126,10224−10225.(61)Zhang,D.Y.;Winfree,E.ControlofDNAStrandDisplacementKineticsUsingToeholdExchange.J.Am.Chem.Soc.2009,131,17303−17314.(62)Chen,R.P.;Blackstock,D.;Sun,Q.;Chen,W.DynamicproteinassemblybyprogrammableDNAstranddisplacement.Nat.Chem.2018,10,474−481.(63)Bini,L.;Pacini,S.;Liberatori,S.;Valensin,S.;Pellegrini,M.;Raggiaschi,R.;Pallini,V.;Baldari,C.T.ExtensivetemporallyregulatedreorganizationofthelipidraftproteomefollowingT-cellantigenreceptortriggering.Biochem.J.2003,369,301−309.(64)Taylor,M.J.;Perrais,D.;Merrifield,C.J.AHighPrecisionSurveyoftheMolecularDynamicsofMammalianClathrin-MediatedEndocytosis.PLoSBiol.2011,9,No.e1000604.(65)Rocks,O.;Peyker,A.;Bastiaens,P.I.H.Spatio-temporalsegregationofRassignals:oneship,threeanchors,manyharbors.Curr.Opin.CellBiol.2006,18,351−357.(66)DelGrosso,E.;Ragazzon,G.;Prins,L.J.;Ricci,F.BackCover:Fuel-ResponsiveAllostericDNA-BasedAptamersfortheTransientReleaseofATPandCocaine(Angew.Chem.Int.Ed.17/2019).Angew.Chem.,Int.Ed.2019,58,5772.(67)Lu,Y.;Liu,J.FunctionalDNAnanotechnology:emergingapplicationsofDNAzymesandaptamers.Curr.Opin.Biotechnol.2006,17,580−588.(68)Cozzoli,L.;Gjonaj,L.;Stuart,M.C.A.;Poolman,B.;Roelfes,G.ResponsiveDNAG-quadruplexmicelles.Chem.Commun.2018,54,260−263.(69)Idili,A.;Vallée-Bélisle,A.;Ricci,F.ProgrammablepH-TriggeredDNANanoswitches.J.Am.Chem.Soc.2014,136,5836−5839.(70)Ma,L.;Liu,J.CatalyticNucleicAcids:Biochemistry,ChemicalBiology,Biosensors,andNanotechnology.iScience2020,23,100815.2808https://doi.org/10.1021/acs.nanolett.0c04867NanoLett.2021,21,2800−2808
此文档下载收益归作者所有