资源描述:
《A FUNCTIONAL MICROARRAY PLATFORM WITH SELF ASSEMBLED MONOLAYERS ON 3C-SILICON CARBIDE - Cooper et al. - Unknown - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
SupportingInformationAFUNCTIONALMICROARRAYPLATFORMWITHSELFASSEMBLEDMONOLAYERSON3C-SILICONCARBIDEOrenCoopera,Hoang-PhuongPhanb,BeiWangc,SeanLowed,ChristopherJ.Daya,Nam-TrungNguyenb,JoeTiralongoa*aInstituteforGlycomics,GriffithUniversity,GoldCoastCampus,QLD4222,AustraliabQueenslandMicroNanotechnologyCentre,GriffithUniversity,NathanCampus,QLD,AustraliacEnvironmentalFuturesResearchInstitute,GriffithUniversity,NathanCampus,QLD4111,AustraliadCentreforCleanEnvironmentandEnergy,GriffithUniversity,GoldCoastCampus,QLD4222,Australia*Correspondingauthors:JoeTiralongo,InstituteforGlycomics,GriffithUniversity,GoldCoastCampus,QLD4222,Australia,Tel:+61755527029;E-mail:j.tiralongo@griffith.edu.auTABLEOFCONTENTSTableS1:Comparisonoforganosilanebiofunctionalizationofdifferentsurfacesviaeithersilaneliquid/vapourphasedeposition.............................................................................................................................................2TableS2:5mx5mAFMImageAnalysis...........................................................................................................3TableS3:5mx5mAFMHeightParameters......................................................................................................3TableS4:50mx50mAFMImageAnalysis.......................................................................................................3TableS5:50mx50mAFMHeightParameters..................................................................................................3TableS6:Imageanalysisandheightparametersof93mx93mAFMsectionofimmobilizedglycanspot.......4TableS7:ImageAnalysisandheightparametersof50xLaserScanofSiCAl6x6mmareabetweenAlelectrodesbeforeandafterCVDGOPTS........................................................................................................................4FigureS1:Superepoxy3(ArrayIT)GlycanArrayHybridisationwithWGA...............................................................5FigureS2:HeatmaprepresentationofglycanarraysprobedwithWGA-TR(422.5ng)conjugate.Statisticallysignificant(p=0.05)bindingeventsaredisplayedinyellowandfoldchangesinred(0–20).(A)α-GOPTSSiCArray;(B)SuperEpoxy3glass(ArrayIT)...................................................................................................6FigureS3:50mx50mAFMimagesandheightsensorprofilesof(A)O2PlasmatreatedSiC;(C)VapourPhasedepositionofβ-GOPTSonSiC(D)Printedglycan.Heightsensorprofiles(B,D,F)areprovidedadjacenttoeachrespectiveimage....................................................................................................................................7FigureS4:93mx93mAFMmeasurementofrelativeadhesiveforcesassociatedwithprintedglycanonβ-GOPTSSiCsurface........................................................................................................................................8FigureS5:(A)10LaserScan1010mmwaferSiCthinfilm.GreyareasareSiC,whiteareasarealuminumelectrodes;(B)Lasermicroarrayscanof64FITCspotsprintedinboxedarea.Averagespotsizeis154.3±8.8m;(C)ElectricalmeasurementsofSiCthinfilmbeforeandafterGOPTSsilanization...........................8FigureS6:50xLaserScanof6mmx6mmSiCAl(yellowboxedareainfigure4).(A)HeightparametersforroughnessanalysisbeforeGOPTSsilanization(Ssk:55.187)(B)HeightparametersforroughnessanalysisafterGOPTSsilanization(Ssk:14.889)..........................................................................................................8
1TableS1:Comparisonoforganosilanebiofunctionalizationofdifferentsurfacesviaeithersilaneliquid/vapourphasedeposition.SubstrateOrganosilaneDepositionInteractionMeasurementREFSiAPTESLiquidB-phycoerythrin-streptavidin-biotinEpifluorescenceMicroscope1GlassAPTESLiquidNH3productionbyaurease–E.coliantibodyconjugateRedoxPotential2PZT-GlassAPTESLiquidMonoclonalantibodytoE.coliO157:H7Resonantmicrocantilever3PDMS/GlassAPTESLiquidFibronectincoatingforS180celladhesionFluorescenceMicroscopy4Si(100)/SiO2APTESLiquidCovalentattachmentoftheBSAandIL-6complexELISA5ImmobilizedD-phenylglycineaminotransferasetoenzymaticallymeasureSiAPTESLiquidFluorescenceDetection6L-glutamatePDMS/GlassAPTESLiquidIL-5andmonoclonalanti-IL-5antibodiesMicrofluidicDeviceELISA(ColorimetricDetection)76’-sialyllactose&3’-sialyllactosewereusedtodetectinfluenzaAVirusSiO2APTESLiquidFET8hemagglutinin(HumanH1N1andAvianH5N1)FluorescentlylabelledBSAproteinsimmobilizedusingglutaric3C-SiCAPTESLiquidFluorescenceOpticalMicroscopy9dialdehydelinkers.FluorescentlylabelledBSAproteinsimmobilizedusingglutaric6H-SiCAPTESLiquidFluorescenceOpticalMicroscopy10dialdehydelinkers.4H-SiC/EpitaxialResistanceAcrossa100m×4mmGraphene11APTESLiquidHumanChorionicGonadotropinSensorGrapheneChannel4H/3C-SiCAPTESLiquidNanowirearraybiotin-streptavidin-Cy3FluorescenceMicroscopy12-13β-SiC3nmAttachmentofBSA,highmolecularweightkininogenorIgGtodecreaseNanoparticlecytotoxicityonRAW264.7cellsmeasuredAPTESLiquid14nanoparticlestoxicityofSiCnanoparticlesthroughlactatedehydrogenasereleaseSiO2andSi3N4APTESLiquidDetectionofanti-rabbitanti-IgGAF488onIgGcoatedsurfacesFluorescencemicroscopy15Si/SiO2APTESLiquidDNApurificationSpectrofluorimeter16Si/SiO2APTESVapourStreptavidin-biotinGFPconjugateFluorescenceMicroscopy173C-SiCAPTESVapourDNAdetectionSiCNWFET18Liquid6H-SiCAPTESDNAdetectionSiCNWFET19-20VapourSi(100)/SiO2APTES&APDIPESVapourCyaninedyeUV-VISAbsorptionMeasurements216H-SiCAPTES&APDMESLiquidBiocompatibilityandCellproliferationofH4humanneurogliomaonSiCMTTviabilityassayofPheochromocytomatouscells22FusedSilicaFiberopticbiosensorscoatedwithDNAusedtodetermineTmfromtheGOPTSLiquidSpectrofluorimeter23Particlesdissociationofduplexesoffluorescein-labelleddA20:dT20SiGOPTSLiquidNucleicacidarraysprobedwithcomplementarystrandgoldparticlesAFMHeightMeasurement24GlassGOPTSLiquidCaptureofcervicalexfoliativecellsCellcountsfromphotomicrographs25Si(100)GOPTSLiquidHaptenbiosensorforimmunoassay-basedflow-throughassayChemiluminescence26Cantileverbiosensorfordetectionofantibiotic-selectivegrowthofCantileverResonancefrequencyandSEMSiGOPTSLiquid27E.coliSi(111)/SiO2APTES/GOPTSVapourPLL+FITCcoating.FluorescenceMicroscopy28SiO2OTMSLiquidPLL+FITCcoating.FluorescenceDetection29ControlledimmobilizationofDNAontonanostructuredarraysandSi(100)/SiO2OTMS/APTESVapourFluorescenceMicroscopy30-31subsequentdetectionusingstreptavidin-biotinGFPDNAprobesManualdepositionofoligonucleotideswasprobedusingTRlabelledSi(100)MPTMSLiquidFluorescenceMicroscopy32complementarystrandsLiquidSiO2MPTMSGold-thiolatebindingAFMCantileverForcemeasurementsandXPS33Vapour1APTES:(3-Aminopropyl)triethoxysilane4APDMES:3-Aminopropyl(diethoxy)methylsilane3APDIPES:3-Aminopropyldiisopropylethoxysilane4GOPTS:3-Glycidyloxypropyltrimethoxysilane5OTMS:Octadecyltrimethoxysilane6MPTMS:(3-Mercaptopropyl)trimethoxysilan
2TableS2:5mx5mAFMImageAnalysisFabricationStepImageAnalysis3C-SiCCVDGOPTSGlycanDepositionImageRq1.66nm2.52nm58.6nmImageRa1.30nm1.93nm45.8nmImageRmax11.6nm14.1nm254nmZRange11.6nm14.1nm258nmSurfaceAreaDifference0.0000287%0.00381%5.10%Rq1.66nm2.52nm59.0nmRa1.30nm1.93nm46.1nmRoughnessRmax11.6nm14.1nm253nmSkewness0.7810.5851.41Kurtosis4.233.453.88TableS3:5mx5mAFMHeightParametersFabricationStepHeightParameters3C-SiCCVDGOPTSGlycanDepositionSa1.30nm1.93nm46.1nmSku4.233.453.88Sp7.89nm8.13nm183nmSq1.66nm2.52nm59.0nmSsk0.7810.5851.41Sv-3.71nm-5.93nm-70.1nmSz11.6nm14.1nm253nmTableS4:50mx50mAFMImageAnalysisFabricationStepImageAnalysis3C-SiCCVDGOPTSGlycanDepositionImageRq3.85nm4.18nm63.0nmImageRa2.90nm3.24nm34.0nmImageRmax34.2nm39.1nm928nmZRange34.2nm39.1nm920nmSurfaceAreaDifference0.00155%0.00184%1.37%Rq3.85nm4.18nm63.1nmRa2.90nm3.24nm34.1nmRoughnessRmax34.2nm39.1nm921nmSkewness1.020.9725.59Kurtosis4.634.2750.1TableS5:50mx50mAFMHeightParametersFabricationStepHeightParameters3C-SiCCVDGOPTSGlycanDepositionSa2.90nm3.24nm34.1nmSku4.634.2750.1Sp22.6nm29.0nm850nmSq3.85nm4.18nm63.1nmSsk1.020.9725.59Sv-11.7nm-10.1nm-71.9nmSz34.2nm39.1nm921nm
3TableS6:Imageanalysisandheightparametersof93mx93mAFMsectionofimmobilizedglycanspot.ImageAnalysisSParameters-HeightImageRq40.9nmSa32.1nmImageRa32.1nmSku9.02ImageRmax482nmSp422nmZRange480nmSq40.9nmSurfaceArea0.11%Ssk1.65DifferenceRq40.9nmSv-59.6nmRa32.1nmSz482nmRoughnessRmax482nmSkewness1.65Kurtosis9.02TableS7:ImageAnalysisandheightparametersof50xLaserScanofSiCAl6x6mmareabetweenAlelectrodesbeforeandafterCVDGOPTS.ImageAnalysisSiCAlCVDGOPTSSq[μM]0.1240.583Ssk55.17310.757Sku4566.857286.197Sp[μm]18.18533.765Sv[μm]4.356.334Sz[μm]22.53540.099Sa[μm]0.0380.222Sdq0.0320.078Sdr[%]0.0450.16FigureS1:Superepoxy3(ArrayIT)GlycanArrayHybridisationwithWGA
4FigureS2:HeatmaprepresentationofglycanarraysprobedwithWGA-TR(422.5ng)conjugate.Statisticallysignificant(p=0.05)bindingeventsaredisplayedinyellowandfoldchangesinred(0–20).(A)α-GOPTSSiCArray;(B)SuperEpoxy3glass(ArrayIT)
5(A)(B)16.6nm11.8nm(C)(D)17.2nm-12.1nm(E)(F)319.4nm-126.0nmFigureS3:50mx50mAFMimagesandheightsensorprofilesof(A)O2PlasmatreatedSiC;(C)VapourPhasedepositionofβ-GOPTSonSiC(D)Printedglycan.Heightsensorprofiles(B,D,F)areprovidedadjacenttoeachrespectiveimage.
6FigureS4:93mx93mAFMmeasurementofrelativeadhesiveforcesassociatedwithprintedglycanonβ-GOPTSSiCsurface.(A)(B)(C)FigureS5:(A)10LaserScan1010mmwaferSiCthinfilm.GreyareasareSiC,whiteareasarealuminum(F)electrodes;(B)Lasermicroarrayscanof64FITCspotsprintedinboxedarea.Averagespotsizeis154.3±8.8m;(C)ElectricalmeasurementsofSiCthinfilmbeforeandafterGOPTSsilanization.FigureS6:50xLaserScanof6mmx6mmSiCAl(yellowboxedareainfigure4).(A)HeightparametersforroughnessanalysisbeforeGOPTSsilanization(Ssk:55.187)(B)HeightparametersforroughnessanalysisafterGOPTSsilanization(Ssk:14.889).
7REFERENCES1.Koyano,T.;Saito,M.;Miyamoto,Y.;Kaifu,K.;Kato,M.,Developmentofatechniqueformicroimmobilizationofproteinsonsiliconwafersbyastreptavidin-biotinreaction.BiotechnologyProgress1996,12(1),141-144.2.Ercole,C.;DelGallo,M.;Mosiello,L.;Baccella,S.;Lepidi,A.,Escherichiacolidetectioninvegetablefoodbyapotentiometricbiosensor.SensorsandActuatorsB-Chemical2003,91(1-3),163-168.3.Campbell,G.A.;Mutharasan,R.,DetectionofpathogenEscherichiacoliO157:H7usingself-excitedPZT-glassmicrocantilevers.BiosensBioelectron2005,21(3),462-73.4.Zhang,Z.L.;Crozatier,C.;LeBerre,M.;Chen,Y.,Insitubio-functionalizationandcelladhesioninmicrofluidicdevices.2005;Vol.78–79,p556-562.5.Krishnamoorthy,S.;Bei,T.;Zoumakis,E.;Chrousos,G.P.;Iliadis,A.A.,Morphologicalandbindingpropertiesofinterleukin-6onthinZnOfilmsgrownon(100)siliconsubstratesforbiosensorapplications.BiosensBioelectron2006,22(5),707-14.6.Laiwattanapaisal,W.;Yakovleva,J.;Bengtsson,M.;Laurell,T.;Wiyakrutta,S.;Meevootisom,V.;Chailapakul,O.;Emneus,J.,On-chipmicrofluidicsystemsfordeterminationofL-glutamatebasedonenzymaticrecyclingofsubstrate.Biomicrofluidics2009,3(1),14104.7.Yu,L.;Li,C.M.;Liu,Y.;Gao,J.;Wang,W.;Gan,Y.,Flow-throughfunctionalizedPDMSmicrofluidicchannelswithdextranderivativeforELISAs.LabChip2009,9(9),1243-7.8.Hideshima,S.;Hinou,H.;Ebihara,D.;Sato,R.;Kuroiwa,S.;Nakanishi,T.;Nishimura,S.;Osaka,T.,AttomolardetectionofinfluenzaAvirushemagglutininhumanH1andavianH5usingglycan-blottedfieldeffecttransistorbiosensor.AnalChem2013,85(12),5641-4.9.Schoell,S.J.;Sachsenhauser,M.;Oliveros,A.;Howgate,J.;Stutzmann,M.;Brandt,M.S.;Frewin,C.L.;Saddow,S.E.;Sharp,I.D.,Organicfunctionalizationof3C-SiCsurfaces.ACSApplMaterInterfaces2013,5(4),1393-9.10.Schoell,S.J.;Hoeb,M.;Sharp,I.D.;Steins,W.;Eickhoff,M.;Stutzmann,M.;Brandt,M.S.,Functionalizationof6H-SiCsurfaceswithorganosilanes.AppliedPhysicsLetters2008,92(15),153301.11.Teixeira,S.;Burwell,G.;Castaing,A.;Gonzalez,D.;Conlan,R.S.;Guy,O.J.,Epitaxialgrapheneimmunosensorforhumanchorionicgonadotropin.SensorsandActuatorsB-Chemical2014,190,723-729.12.Williams,E.;Davydov,A.;Motayed,A.;Sundaresan,S.;Bocchini,P.;Richter,L.;Stan,G.;Steffens,K.;Zangmeister,R.;Schreifels,J.;V.Rao,M.,Immobilizationofstreptavidinon4H-SiCforbiosensordevelopment.2012;Vol.258,p6056-6063.13.Williams,E.H.;Schreifels,J.A.;Rao,M.V.;Davydov,A.V.;Oleshko,V.P.;Lin,N.J.;Steffens,K.L.;Krylyuk,S.;Bertness,K.A.;Manocchi,A.K.;Koshka,Y.,Selectivestreptavidinbioconjugationonsiliconandsiliconcarbidenanowiresforbiosensorapplications.JournalofMaterialsResearch2013,28(1),68-77.14.Ibeth,G.-L.;Cezary,C.;Aleksandra,S.;Jerzy,F.J.;Andrzej,K.,SiCnanoparticlesaspotentialcarriersforbiologicallyactivesubstances.JournalofPhysics:ConferenceSeries2009,146(1),012022.15.Awsiuk,K.;Bernasik,A.;Kitsara,M.;Budkowski,A.;Petrou,P.;Kakabakos,S.;Prauzner-Bechcicki,S.;Rysz,J.;Raptis,I.,Spectroscopicandmicroscopiccharacterizationofbiosensorsurfaceswithprotein/amino-organosilane/siliconstructure.ColloidsSurfBBiointerfaces2012,90,159-68.16.Pasquardini,L.;Lunelli,L.;Potrich,C.;Marocchi,L.;Fiorilli,S.;Vozzi,D.;Vanzetti,L.;Gasparini,P.;Anderle,M.;Pederzolli,C.,Organo-silanecoatedsubstratesforDNApurification.AppliedSurfaceScience2011,257(24),10821-10827.17.Zhang,G.J.;Tanii,T.;Zako,T.;Hosaka,T.;Miyake,T.;Kanari,Y.;Funatsu,T.;Ohdomari,I.,Nanoscalepatterningofproteinusingelectronbeamlithographyoforganosilaneself-assembledmonolayers.Small2005,1(8-9),833-7.18.Fradetal,L.;Bano,E.;Attolini,G.;Rossi,F.;Stambouli,V.,AsiliconcarbidenanowirefieldeffecttransistorforDNAdetection.Nanotechnology2016,27(23),235501.19.Fradetal,L.;Stambouli,V.;Bano,E.;Pelissier,B.;Choi,J.;Ollivier,M.;Latu-Romain,L.;Boudou,T.;Paintrand,I.,Bio-FunctionalizationofSiliconCarbideNanostructuresforSiCNanowire-BasedSensorsRealization.2014;Vol.14,p3391-7.20.Stambouli,V.;Ternon,C.;Serre,P.;Fradetal,L.,FunctionalizationofSi-BasedNWFETsforDNADetection.Beyond-CmosNanodevices12014,25-41.21.Zhang,F.;Sautter,K.;Larsen,A.M.;Findley,D.A.;Davis,R.C.;Samha,H.;Linford,M.R.,Chemicalvapordepositionofthreeaminosilanesonsilicondioxide:surfacecharacterization,stability,effectsofsilaneconcentration,andcyaninedyeadsorption.Langmuir2010,26(18),14648-54.22.Oliveros,A.;Frewin,C.L.;Schoell,S.J.;Hoeb,M.;Stutzmann,M.;Sharp,I.D.;Saddow,S.E.,Assessmentofcellproliferationon6H-SiCbiofunctionalizedwithself-assembledmonolayers.JournalofMaterialsResearch2013,28(1),78-86.23.Piunno,P.A.E.;Watterson,J.;Wust,C.C.;Krull,U.J.,ConsiderationsforthequantitativetransductionofhybridizationofimmobilizedDNA.AnalyticaChimicaActa1999,400(1),73-89.24.Dubrovin,E.V.;Presnova,G.V.;Rubtsova,M.Y.;Egorov,A.M.;Grigorenko,V.G.;Yaminsky,I.V.,TheUseofAtomicForceMicroscopyfor3DAnalysisofNucleicAcidHybridizationonMicroarrays.ActaNaturae2015,7(2),108-114.
825.Xing,G.W.;Xiang,S.;Xue,W.;Aodeng,G.W.;Liu,Y.;Zhang,J.H.;Lin,J.M.,Captureofcervicalexfoliativecellsonaglassslidecoatedby3-glycidyloxypropyltrimethoxysilaneandpoly-L-lysine.JPharmAnal2012,2(3),174-179.26.Huebner,M.;BenHaddada,M.;Methivier,C.;Niessner,R.;Knopp,D.;Boujday,S.,Layer-by-layergenerationofPEG-basedregenerableimmunosensingsurfacesforsmall-sizedanalytes.BiosensBioelectron2015,67,334-41.27.Gfeller,K.Y.;Nugaeva,N.;Hegner,M.,RapidBiosensorforDetectionofAntibiotic-SelectiveGrowthofEscherichiacoli.AppliedandEnvironmentalMicrobiology2005,71(5),2626-2631.28.Markov,A.;Wolf,N.;Yuan,X.;Mayer,D.;Maybeck,V.;Offenhausser,A.;Wordenweber,R.,ControlledEngineeringofOxideSurfacesforBioelectronicsApplicationsUsingOrganicMixedMonolayers.ACSApplMaterInterfaces2017,9(34),29265-29272.29.Mooney,J.F.;Hunt,A.J.;McIntosh,J.R.;Liberko,C.A.;Walba,D.M.;Rogers,C.T.,Patterningoffunctionalantibodiesandotherproteinsbyphotolithographyofsilanemonolayers.ProcNatlAcadSciUSA1996,93(22),12287-91.30.Tanii,T.;Hosaka,T.;Miyake,T.;Zhang,G.J.;Zako,T.;Funatsu,T.;Ohdomari,I.,Preferentialimmobilizationofbiomoleculesonsiliconmicrostructurearraybymeansofelectronbeamlithographyonorganosilaneself-assembledmonolayerresist.AppliedSurfaceScience2004,234(1-4),102-106.31.Takashi,T.;Takumi,H.;Takeo,M.;Yuzo,K.;Guo-Jun,Z.;Takashi,F.;Iwao,O.,HybridizationofDeoxyribonucleicAcidandImmobilizationofGreenFluorescentProteinonNanostructuredOrganosilaneTemplates.JapaneseJournalofAppliedPhysics2005,44(7S),5851.32.Lenigk,R.;Carles,M.;Ip,N.Y.;Sucher,N.J.,Surfacecharacterizationofasilicon-chip-basedDNAmicroarray.Langmuir2001,17(8),2497-2501.33.Singh,J.;Whitten,J.E.,Adsorptionof3-MercaptopropyltrimethoxysilaneonSiliconOxideSurfacesandAdsorbateInteractionwithThermallyDepositedGold.JournalofPhysicalChemistryC2008,112(48),19088-19096.