Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca

Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca

ID:81816809

大小:11.21 MB

页数:12页

时间:2023-07-21

上传者:U-14522
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第1页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第2页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第3页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第4页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第5页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第6页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第7页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第8页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第9页
Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca_第10页
资源描述:

《Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Ca》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleMetal-ImmobilizedMicellarAggregatesofaBlockCopolymerfromaMixedSolventforaSERS-ActiveSensingSubstrateandVersatileDipCatalysisSoumiliDaripa,RampalVerma,DebanjanGuin,ChanchalChakraborty,KamlendraAwasthi,andBiplabKumarKuila*CiteThis:Langmuir2021,37,2445−2456ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Here,wehavereportedmicellaraggregationsofanamphiphilicblockcopolymerinmixedsolventandtheirsubsequentuseasatemplateforthefabricationofaverydense,tunablemetalnanoparticle-decoratedsurfaceforSERSandflexibledipcatalysisapplications.Asilvernanoparticle-immobilizedlayeronsiliconsubstratesshowsexcellentSERS(surface-enhancedRamanscattering)-basedsensingperformanceformodelanalyterhodamineBupto10−6Mconcentrationwithawell-definedcalibrationcurve.Furthermore,afacileapproachtothepreparationofmetalNP-immobilizedBCPmembranesasefficientdipcatalystfortwomodelreactions(thereductionofnitrophenolandtheSuzuki−Miyaurareactionofiodobenzeneor2,7-diiodofluorenewithphenylboronicacid)isalsodemonstrated.TheAgNP-decoratedfilmexhibitshighefficiencyandextensivereusabilityinaprototypereactionsuchasthereductionofnitrophenolbysodiumborohydridewithaveryhighturnovernumber,>126(forasingleuse),whereasthePdNP-immobilizedfilmalsohasahigh,∼100%,reactionyieldandextensivereusabilityandapplicablefordifferentaromaticsystems.Thisworkprovidesanewplatformforthedesignandsynthesisofafunctionalizable,flexible,andhighlymechanicallystabledipcatalystwhichishighlydemandedinthecatalyticproductionofvalue-addedchemicalsandenvironmentalapplicationssuchaswastewatertreatment.■INTRODUCTIONwherehighlydenseparticlesarefixedandassembledonasolidsubstratenotonlyhavepropertiessimilartothoseofdispersedNanostructuredlayerswithimmobilizedmetalnanoparticlesatnanoparticlesinliquidsolutionbutadditionallyhaveuniquehighdensityonasolidsubstratehaveattractedsignificantresearchattentionduetotheirpotentialapplicationsinsurfacetopography.Thesynergisticinteractionofnano-photonics,1plasmonics,2electronics,3chemicalsensing,4particleswithadjacentnanoparticlesandthesubstrateenhanceDownloadedviaUNIVOFNEWMEXICOonMay16,2021at11:35:59(UTC).4−7theiroptical,electrical,andcatalysisproperties.Therearecatalysis,andsurface-enhancedRamanscattering(SERS).8,9Inadditiontotheirexcellentpropertiessuchasseveralmethodsoffabricatingsuchmetalnanoparticlelayers1415largesurfaceareas,size-dependentopticalproperties,andgoodincludingelectrodeposition,chemicalplating,spincoat-Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.1617biocompatibilitysimilartothatoffreenanoparticles,theyhaveing,,layer-by-layerdeposition,andnanopatterningusing18auniquetwo-dimensionalsurfacetopographywhichmakestop-downapproachessuchase-beamlithographyandthemsuitablenanostructuredplatformsforrealdevice19nanoimprinting.Becauseofthewell-definedmorphologyapplications.Amongdiversemetalnanoparticles,silvernano-onthenanometerscale,self-assembledblockcopolymerparticleshavebeenwidelystudiedbecauseoftheirsize-(BCP)layersweresuccessfullyemployedasstructure-guidingdependentopticalandelectronicproperties,largesurface-to-materialfortheselectivelocalizationofmetal,metaloxide,andvolumeratios,excellentbiocompatibility,easeofmodificationfunctionalnanoparticlesonsolidsubstrates.20−24Inparticular,withvariousfunctionalgroups(e.g.,thiolandaminogroups),amphiphilicBCPssuchaspolystyrene-block-poly(acrylicacid)10anduniquephotothermalproperties.Thedesignand(PS-b-PAA)showawiderangeofcrew-cutaggregatesinthesynthesisofnovelPd-basednanomaterialshavebecomeareas11ofintenseresearchinterestduetotheirwidevarietiesofapplicationsincatalysis,particularlyinorganiccouplingReceived:December9,2020reactionsandhydrogendetection,purification,andstorage.Revised:February2,2021However,itshouldbementionedthatinmostofthecasesPublished:February12,2021metalnanoparticlesarepresentintheformofaliquid12,13suspensionandhavealreadybeenstudiedextensively.Comparedtotheirliquidsuspension,metalnanoparticlelayers©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c035052445Langmuir2021,37,2445−2456

1Langmuirpubs.acs.org/LangmuirArticle25solutionsofsolvent−nonsolventmixtures.Theseaggregatesrodlikeorfiberlikemicellesstructureshouldbemoreincludespheresthroughrods,bicontinuousrods,bilayersinterestingbecausethesestructuresafternanoparticleimmobi-(lamellaeandvesicles),inverserods(HHHs),andlargelizationcangeneratemorehotspotsandactasscattering26spheres(LCMs).Becausethesemicellestructuresexistincenterstoincreasethepathlengthoftheincidentphotonsfor48−50thinfilmstatewhendepositedfromblockcopolymersolutionRamanabsorption.Inthisarticle,wehavestudiedthebyspincoatingordipcoating,theycanbeusedasastructure-self-assemblyofamphiphilicblockcopolymerpolystyrene-guidingmaterialtofabricatenanostructuredsurfacesofblock-poly(acrylicacid)(PS-b-PAA)inamixedsolventsystemdifferentfunctionalmaterialsofvaryingmorphology.ofchloroformandmethanol.TheblockcopolymerexhibitsaMetalssuchasAgandPdnanoparticlesareefficientcatalystswiderangeofmicellestructuressuchasspheres,cylinders,foranumberofchemicalreactions,buttheirreuseandeasyvesicles,andalsosomeintermediatestructuresdependingonseparationfromthereactionmixturearerealchallenges.Ithasthecompositionofthesolvent.Blockcopolymerlayersofbeenreportedthatpolymerthinfilmswheremetalnano-differentmicellesstructurewereusedastemplatesfortheparticlesareembeddedcouldbeanalternativeclassofefficient,fabricationoftunablenanostructuresofmetals(NPs)suchas7,27,28reusable,andeasilyfabricatedcatalysts.Asdiscussedsilverandpalladiumondifferentsolidsubstratessuchassiliconearlier,anamphiphilicblockcopolymerlayercontainingwafers,glass,andflexiblepolymermembranes.ThesemetaldifferentmicellestructurescouldbeusedasatemplatetonanostructuredlayerswerefurtherexploitedfordifferentfabricatenanostructuredsurfacesofmetalandcanbeusedforapplicationssuchasSERS-activesensingsubstratesandasreusable,easilyseparable,andcost-effectivecatalysts.Thereareversatileflexibledipcatalyst.Asilver-nanoparticle-embeddedseveralreportsofmetalnanoparticlesynthesisusingblockblockcopolymerlayeronsiliconsubstrateswasusedasaSERScopolymermicellesastemplatesforcatalysis,butinmostofsubstratefordetectingmodelmoleculerhodamineB(RB),29−31whichexhibitsexcellentSERSperformanceandcandetectacases,thecatalystisinthesolutionphase.concentrationofupto10−6Mwithawell-definedcalibrationOntheotherhand,surface-enhancedRamanscattering(SERS)isafacileandpowerfulanalyticaltoolforultrasensitivecurve.Recently,sphericalcrew-cutmicellesofpolystyrene-b-32−3536−38poly(4-vinylpyridine)(PS-b-P4VP)hasbeenusedasascaffoldchemicalanalysisandbioanalysis.Therearemainly46twomechanisms(electromagneticenhancement(EM)andtofabricatesilvernanostructuresforSERSapplications.Inchemicalenhancement(CM))believedtobeaccountedforbythismethod,silvernanostructureswerepreparedbyincorpo-39ratingsilvernitrateintothemicellecore,followedbySERS.Theelectromagneticenhancementisrelatedtosurfaceplasmonpolarizationresonancetakingplaceinmetalsubsequentreduction.Here,insteadofusingonlyonetypenanoscalegaps(alsoknownashotspots),whichinducesofmicellestructure(spherical),wehaveusedvarietiesofradiativefieldenhancementandstrongSERS-activesig-micellestructuressuchasspherical,cylindrical,andvesicles32−34fromPS-b-PAAasatemplateforthefabricationoftunablenals.SubstrateswithnanostructuresofSERS-activemetals,suchassilverandgold,aremostcommonlyemployedsilvernanoparticle-decoratedsurfaces.ThefabricationmethodasSERSsubstratesbecausetheycandramaticallyenhancetheismorefacile,involvingpostmineralizationofthemicellarthinRamanscatteringintensities.Sofar,traditionaltechniquessuchfilm.Thestepsincludethedippingofapolymericthinfilmina40metalsaltaqueoussolutionthroughwashingtoremovelooselyascolloidalassembly,E-beamwriting,andphotolithog-41,42boundsalt,subsequentreduction,andwashing.Furthermore,araphyhavebeenutilizedtofabricatesuchnanostructuredsurfaces.However,thesetechniquesoftensufferfrommetalnanoparticle-immobilizedflexibleandmechanicallylimitationssuchashighlysophisticatedinstrumentation,stablecatalystfilmwasdevelopedbysimplydepositingblocktime-consuming,expensive,undesiredmetalaggregation,andcopolymermicellesorblockcopolymermicelle-stabilizedNPstherandomdistributionofhotspotswhichlimitstheiruseinonapolymermembraneasthesubstrate.TheAgNP-thedevelopmentofcost-effectiveandreliableSERS-baseddecoratedfilmshowshighefficiencyandextensivereusabilitysensors.Anothermajordrawbackistheachievementofasub-inprototypereactionssuchasthereductionofnitrophenolby10-nm-scalegap,whichisstillaformidabletaskbyusingthesesodiumborohydridewithaveryhighturnovernumberof>126techniques.(forasingleuse).ThePdNP-immobilizedfilmwasusedasaTheuseofablockcopolymerlayerwhichshowsdipcatalystfortheprototypeSuzuki−Miyaurareactionofnanostructuredmorphologythroughself-assemblycanbephenylboronicwithiodobenzeneorwith2,7-diiodofluorene,usedasatemplatetocreatesuchmetalnanostructuresforwhichshowshighefficiencyandextensivereusability.43−46SERS.Inthecaseofablockcopolymer,theinertparticledistanceisusuallytailoredbytheperiodicityofthephase-■EXPERIMENTALSECTIONseparateddomain.ForhighsensitivityintheSERSsubstrate,Materials.PS(16000)-b-PAA(4300)waspurchasedfromtheinterparticledistanceshouldbe<5nmtogeneratePolymerSourceInc.Otherchemicalssuchassodiumborohydride,47sufficienthotspot,butinthecaseofablockcopolymersilvernitrate,palladiumacetate,nitrophenol,iodobenzene,phenyl-self-assembledthinfilm,itisthermodynamicallychallengingtoboronicacid,potassiumcarbonate,and2,7-diiodofluorenewerecreateperiodicityof<5nm.AnamphiphilicblockcopolymerpurchasedfromSigma-Aldrich.Themethanolandchloroformwhichformsdifferenttypesofmicellestructures,suchassolventswerepurchasedfromAcrosOrganicsandusedasis.Siliconspheres,nanorods,andvesiclesdependingonthesolvents,canwafers{100}werecleanedsuccessivelyinanultrasonicbathbeutilizedasascaffoldtocreatenanoparticleassemblies.(dichloromethane)for15minanda“piranha”bath(30%H2O2,Unliketheorderedblockcopolymerstructures(wherethe70%H2SO4,chemicalhazard)for90minat75°CandthenthoroughlyrinsedwithMilliporewateranddriedunderaflowofinterparticledistanceisfixed),heretheprobabilityofargon.Amacroporousnylon-6membranewithadiameterof47mmgeneratingasmallinterparticledistancewillbegreaterasaandanominalporesizeof0.45μmwassuppliedbyFischerScientific.resultoftherelativelyless-orderedarrangementandinter-Deionizedwaterwasusedinallexperiments.connectivenatureofthemicellesonthesolidsubstrate,whichDepositionoftheBlockCopolymerLayer.Ablockcopolymer48inprincipleshouldgeneratemorehotspots.Inparticular,themicellesolution[1−0.5%(w/v)]inamixedsolventwaspreparedas2446https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

2Langmuirpubs.acs.org/LangmuirArticleFigure1.AFMheightimagesofthethinfilmcastfromablockcopolymersolutionof(a)70/30,(b)60/40,(c)50/50,(d)40/60,(e)30/70,and(f)20/80methanol/chloroformmixtures.Solventcompositionsareexpressedinv/v.follows.FirsttherequiredamountofPS-b-PAAwasdissolvedintemperature,theAgNP-immobilizedBCPmembraneswerekeptinchloroformbysonication,anappropriatevolumeofmethanolwasvacuumforfurthercatalysisstudy.added,andtheresultingsolutionwasstirredovernighttogetthePalladiumNanoparticle-ImmobilizedMembranePrepara-equilibriumstructure.ThinfilmsofPS-b-PAAmicelleswerepreparedtion.Forpalladiumnanoparticle-immobilizedmembranepreparation,byspincoating(2500rpm)fromthefilteredsolutionofthepolymer.weadoptedaslightdifferentapproach.First,wepreparedPdNP-FortheAFMandUV−visstudies,theblockcopolymersolutionwasanchoredPS-b-PAA(PdNP-PS-b-PAA)micellesinamixedsolventdepositedonsiliconandaglasssubstrate,respectively.[chloroform−methanol(70:30)].TopreparePdNP-PS-b-PAA,BCPDepositionofSilverNanoparticles.Forthedepositionofsilver(10mg/mL)andPd(OAC)2(1.6mg/mL)weredissolvedinnanoparticles,theblockcopolymermicelle-coatedglassslidesorchloroformandmethanolseparately.OnemilliliterofPS-b-PAAsiliconwaferswereimmersedinanaqueousmetalsaltsolution(10solutioninchloroformand0.3mLofPd(OAC)2solutioninmethanolmLof0.01MAgNO3)for1h.Aftermetalsaltdeposition,theweremixedandstirredovernight.TothisBCPmicelle-containingPdsubstratewasthoroughlywashedwithwatertoremovetheexcesssaltprecursor,0.3mLofNaBH4inmethanol(3mg/mL)wasaddedandlooselyabsorbedontheblockcopolymertemplatesurfaceanddriedstirredvigorously.Theresultingblacksolutionwasthenfurtherunderastreamofargon.Thentheblockcopolymerfilmwasdippeddilutedwith0.4mLofchloroform.AfterpreparingaPdNP-anchoredintofreshlypreparedsodiumborohydride(NaBH4)(1mg/mL)PS-b-PAAmicellesolution,itwasfurtherusedforPdNP-immobilizedsolutioninmethanolforthereductionofAgNO3,whichwasBCPmembranepreparationbyspincoatingusinganylon-6substrateanchoredtotheblockcopolymersurface.TheformationofsilversimilartotheAgNP-immobilizedBCPmembraneasdescribednanostructuresonglasswasvisuallyobservedduetothecolorchange.earlier.ThecompositemembranewasfurtherdippedinwaterforSilverNanoparticle-ImmobilizedMembranePreparation.sometimetoremovetheabsorbedimpuritiespresentintheBlockcopolymerPS-b-PAAwasdissolvedinamethanol/chloroformmembraneduringreduction.ThePdNP-PS-b-PAAcompositemixture(1:1byvolume)ataconcentrationof1wt%.Theresultingmembranewasdirectlyusedforcatalysisapplication.micellesolutionwasfilteredthroughPTFEfilterswithaporesizeofCatalysisStudy.TheAgNP-catalyzedreductionof4nitrophenol0.45μmtoremovelargeaggregates(ifany).ThecompositebyNaBH4wasstudiedbymeasuringtheelectronicabsorptionofthemembraneswerepreparedbyspin-coatingtheBCPsolutionsontoreactionmixtureatdifferenttimes.Astandardquartzcuvettethenylonsubstrates.TopreventtheleakageofBCPsolutionthrough(specifications:4.5mL,1cmpathlength)wasusedfortheUV−vistheporoussubstrate,thenylonsubstratesweresoakedwithdeionizedstudyofthereactionmixture.Forthekineticsstudies,anaqueouswaterfor2minsothatwatermoleculescouldfilltheporesofthesolutionofp-NP(3.0mL,0.12mM)wastakeninthecuvette,andnylonsubstratebeforespincoating.Afterbeingremovedfromwater,NaBH4(aqueoussolution,0.2mL,0.18M)wasadded(finalthewater-soakedsubstrateswereputonaglassslide.ABCPmicelleconcentrations:[p-NP]=0.11mM,[NaBH4]=11mM),resultingsolution(0.2mL)wasspreadhomogeneouslyonthewholesurfaceofinadeepeningoftheyellowcolor.Theyellowsolutionhasaλmaxatthenylonsubstrate,followedbyspincoatingat1500rpmfor30sandaround400nmduetotheformationofp-nitrophenolate.Thethenspincoatingat5000rpmfor180s.Thenthemembranewassolutionwasthenstirredfor5min.Thecatalystfilm(thickness∼150μm,totalsurfacearea=16cm2)wasfixedonthetwoopaquesideofheatedinvacuumat60°Cfor2htoremoveresidualsolventandwater.Surfacereconstructionofthemembranewasdonebydippingitthecuvettesothatlightcanfreelypassthroughthesolution.Theinmethanolfor5minanddryinginair.TheBCPmembranesaftersolutionwasstirredfromthetopusingaglassmechanicalstirrersurfacereconstructionwereimmersedinAgNO3solutionfor2h.carefullywithoutdisturbingthelightbeam.TheabsorptionspectrumAfterremovingthemembranesfromAgNO3,theywerethoroughlyofthereactionmixturewasstirredatregularintervalstoobservethewashedwithdeionizedwatertoremovethelooselyboundsilverdecayofthepeakduetothegradualdecreaseinp-nitrophenolate.Wenitratemoleculesanddriedinair.ThentheseAgNO3-modifiedBCPhavealsoverifiedthattheconcentrationrangeofp-NPusedformembranesweredippedintoanNaBH4solutionofmethanol(1mg/kineticstudyalsoobeystheBeer−Lambertlaw.ForthePd-catalyzedmL)toreducethesilverprecursortoaAgnanoparticle.Afterbeingreactionstudy,theSuzuki−Miyaurareactionwaschosen.Allreactionswashedwithdeionizedwaterthreetimesanddriedatroomwerecarriedoutatnormalatmosphericpressurewithoutusinginert2447https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

3Langmuirpubs.acs.org/LangmuirArticleFigure2.FESEMimagesofthethinfilmcastfromblockcopolymersolutionsof(a)70/30,(b)50/50,and(c)20/80methanol/chloroformmixtures.Solventcompositionsareexpressedinv/v.Figure3.Schematicillustrationsforthepreparationofasilvernanostructuredsurface.conditions.Thereactionwascarriedoutasfollows.Base(2mMconcentrationofchloroformchangedto40%,amixtureofK2CO3)wastakenin15mLofsolventintoareactiontube.Then1sphericalandcylindricalmicelleswasobserved,whichmmolofthearyliodidewasaddedtothereactionmixture.TheindicatedthatthesphereicalmicellesaretransformingintocatalystBCPcompositemembrane(thickness∼150μm,totalsurface2cylindricalmicelles.Whereasathinfilmdepositedfromarea=20cm)wasintroducedaroundthewallofthereactiontube.mixtureofchloroform/methanol(50:50)showsexclusivelyAfteradding1.1mmolofphenylboronicacid,thereactiontubewasclosedandintroducedintoanoilbathpreheatedtotherequiredmonodispersedcylindricalorwormlikemicellesstructureswithtemperature.Thereactionmixturewasstirredandtheprogressoftheanaveragediameterof∼25nm.ThesestructuresconsistofareactionwasmonitoredthroughTLC.AfterthecompletionofthecylindricalPScoreandasurroundingPAAcorona.Whenthereaction,thecatalystfilmwasremovedandthereactionmixturewasamountofchloroformisthenincreasedto60%,thefilteredusingsmallamountofsilicagel(Merck,100−200mesh).Themorphologyofthethinfilmtransformedintoabicontinuousfiltratewasevaporatedcompletely,andtheproductwasfurtherrodstructureconsistsofthree-dimensionalnetworksofpurifiedthroughcolumnchromatography.Theproductwasanalyzed25interconnectedbranchedrods(Figure1d).FurtheradditionbyNMR.Thecatalystfilmwastakenoutofthereactionmixturewaswashingwithanorganicsolventsuchasdiethyletherandofchloroform(70%and80%)formedmorevesicles,asdichloromethanetoremoveorganicresidues,dippedinwaterandexpected(Figure1e,fandTEMimage,FigureS2,Supportingisopropanoltoremovethebase,andfinallydriedinvacuumfor1h.Information).ThesevesiclesareclosedbilayerswherethewallThefilmwasthenreadyforreuse.ofthevesicleformedbythePAAblockissandwichedbetweentwocoronasmadeofthePSblock.Theaveragediameterofthe■RESULTSANDDISCUSSIONhollowspheresisintherangeof15−50nm.ThemorphologyTorelatethecolloidalaggregationofPS-b-PAA(16000-b-inFigure1e,fmorecloselyresembleslargecompoundvesicles4300)insolutionwiththestructureinthethinfilm,thefilms(LCVs)whichcanbeconsideredtobeanaggregatedandweredepositedonacleansiliconwaferorglasssubstratefromfusedstructureofindividualvesiclesinthethinfilmduring251%solutioninchloroformandachloroform/methanolmixturesolventevaporation.Aschematicdiagramshowingpossible(v/v).BlockcopolymerPS-b-PAAisinsolubleinmethanolbutmolecularpackingthatresultsinsuchmicelleformationinasolubleinchloroform,andthethinfilmdepositedfromsolventmixtureofvaryingcompositionisshowninFigureS3chloroformdoesnotshowanyregularmicrophase-separated(SupportingInformation).Figure2showstheSEMimageofstructure(FigureS1).AFMheightimagesofthethinfilmthethinfilmdepositedfromPS-b-PAAsolutioninamixtureofdepositedfromsixPS-b-PAApolymersolutionsofthemethanolandchloroformofthreecompositions(70/30,50/methanol/chloroformmixturewithvaryingcompositionsof50,and20/80methanol/chloroform).TheSEMimageshighlychloroformfrom30to80%aredepictedinFigure1.TheAFMresembletheAFMimageswhere70/30,50/50,and20/80imageofthethinfilmdepositedfrommethanol/chloroformmethanol/chloroformmixturesshowssphericalandcylindrical(70/30)clearlyexhibitssphericalcrew-cutmicelleswithanmicellesandvesicles,respectively.Furtherarraysofsilveraveragediameterof∼25nm.Thesesimplesphericalmicellesnanoparticlesonthesolidsubstratewerefabricatedusingself-consistofasphericalcoreofalongPSblocksurroundedbyassembledblockcopolymermicellesasatemplate.Figure3thincoronaofthePAAblock.However,whenthedepictstheschematicdiagramforthefabricationofsucha2448https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

4Langmuirpubs.acs.org/LangmuirArticlenanostructuredsurfaceofmetal.Theblockcopolymerthinfrommethanol/chloroform(70/30)resemblesaverydensefilmsdepositedfrommixedsolventsbyspincoatingwererandomaggregationofsphericalsilvernanoparticlesorimmersedinAgNOsolution,wheretheAg+ionwill3nanoclusterswithasizeofaround20nm.However,coordinatewiththe−COO−ofthe−COOHgroupofthemethanol/chloroform(50/50)correspondstocylindricalPAAblockthrougheitheranionexchangereactionoranfibersnicelydecoratedwithtinysilvernanoparticleorelectrostaticinteraction.TheAg+-loadedblockcopolymernanoclusterwithanaveragesizeof10nm.ThethinfilmmicelleswerefurtherreducedtoAg(0)bytreatingthethinfilmdepositedfrommethanol/chloroform(30/70)depictsinter-insodiumborohydridesolutioninmethanoltoconvertitintoconnectedpearlnecklace-typestructuresformedbythearraysofsilvernanoparticles.Figure4exhibitstheUV−visassemblyofthesmallsilvernanoparticleornanoclusterwithanaveragesizeofaround15nm.Silvernanoparticle-decoratedblockcopolymerthinfilmswerefurthertreatedwithargonplasmatoremovethepolymer,andtheycorrespondtoultradensearraysofmetalnanoparticlesonsiliconsubstrateswheretheaveragesizeoftheAgNPsaredifferentfordifferentthinfilms(FigureS4).Blockcopolymerthinfilmshavingsuchhighlydensearraysofsilvernanoparticlescanbefabricatedonvarietiesofsolidsubstratessuchassiliconwafers,glass,ITO-coatedglasssubstrates,andpolymermembranes.ThechemicalsurfacecompositionofBCP-immobilizedsilvernanoparticleandthevalencestateofsilverwerefurtherinvestigatedbyX-rayphotoelectronspectroscopy(XPS)andareshowninFigureS5(SupportingInformation).Asexpected,peakscorrespond-ingtocarbon,oxygen,andsilverelementswereallobserved.High-resolutionspectra(FigureS5b)ofthesilvershowtwopredominantpeakswithbindingenergiesat368.4and374.4Figure4.OpticalabsorptionspectraofAgblockcopolymerthinfilmseVcorrespondingtotheAg3d5/2andAg3d3/2peaks,depositedfromamixedsolventofvaryingcomposition.respectively.ThisclearlysuggeststhatAgNPshaveasingle52predominantvalencestatewhichismetallicsilver[Ag(0)].Othercharacteristicfeaturesofthespectrasuchaswell-spectraofsuchablockcopolymerthinfilmaftertreatmentseparatedspin−orbitcomponents(Δ=6.0eV),asymmetricwithAgNO3andNaBH4.Allofthethinfilmsonglasspeaks,andlossfeatures(byarrows)furtherconfirmAgmetalsubstratesshowatypicalplasmonicspectrumandconfirmtheandindicatethatAgNPsweresuccessfullysynthesizedusingformationofsilvernanoparticlesinblockcopolymerthinfilms.53Inthecaseofathinfilmdepositedfrom70/30and50/50theBCPtemplate.Asolidsurfacedecoratedwithsuchdensemethanol/chloroformmixtures,theabsorptionmaximumwassilvernanoparticlesshouldbeusefulfordipcatalysisandSERSobservedat415nm,whereasthesamewasredshiftedto423applications.Tofurtherdemonstratetheapplicabilityofthenminthecaseof30/70.Theabsorptionmaximumvaluesatfabricatedsilvernanoparticleembeddedlayer,weinvestigated415and423nmareclearlyattributedtothesurfaceplasmonitsuseasaSERS-basedsensingplatformfordetectingorganicresonancebandofverysmallsilvernanoparticles,inagreementanalytes.Wechoseamodelorganicmolecule,rhodamineB,aswiththeliterature.51Thisredshiftmaybeduetothechangeintheanalyte.Recently,itwasreportedthatpolymernanofiberstheaverageparticlesizeaswellasdifferenttypesofassembliesdecoratedwithmetalnanoparticlesareeffectiveSERS54−58ofthesilvernanoparticlesasshownintheAFMimages.Figuresubstratesintermsofactivityandsensitivity.Consid-5showsAFMimagesoftheblockcopolymerthinfilmsafterering,differentmicellestructuresfromvaryingsolventsilverdeposition,whichcorrespondtoassembliesofsilvercomposition,wehaveselectedasilvernanoparticle-decoratednanoparticlesonasolidsubstrate.FromtheAFMimage,itislayerhavingnanofibermorphology(Figure5b)depositedfromclearthattheblockcopolymermicellesarenicelydecoratedamethanol/chloroformmixture(50:50)forfurtherSERSstudy.TherepresentativeSERSspectrumofRB(10−3−10−6withtinysilvernanoparticles.However,thestructuresarenotordered,buttheoverallmorphologiesofthethinfilmsaftermol/L)adsorbedonaAgnanoparticleembeddedblocksilvernanoparticledecorationaredifferentforBCPthinfilmscopolymerlayerispresentedinFigure6a.Theplotshowsfromdifferentsolventcompositions.Thethinfilmdepositedseveralwell-resolvedRamansignalsat1196and1278cm−1Figure5.AFMimageofsilvernanoparticle-decoratedblockcopolymerthinfilmsdepositedfrom(a)70/30,(b)50/50,and(c)30/70methanol/chloroformmixtures.2449https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

5Langmuirpubs.acs.org/LangmuirArticleFigure6.(a)SERSspectraofanRBaqueoussolutionwithdifferentconcentrations.(b)RelationshipbetweentheRamanintensityofthepeakat1507cm−1andtheRBconcentration.Figure7.SchematicdiagramsforpreparingAgNP-immobilizedBCPcompositemembranes.Thephotographsofthemembranesaftereachtreatmentareshownabove.(C−Cbridge-bandstretchingandaromaticC−Hstretching),concentration.ThefunctionalrelationshipofRamanintensity1357cm−1(aromaticC−Cstretching),1507and1526cm−1andlog(concentration)inthesamplewasfittedwellandis(aromaticC−Hbending),and1644cm−1(aromaticC−Cshownintheinset.SuchanonlinearvariationofRamanbendingandCCstretching),whicharecharacteristicofintensityvslog(concentration)isalsoreportedinthe5960RB.Forcomparison,RamanspectraofRBmoleculesliterature.TheplotalsoclearlypointstothefactthattheadsorbedontheblockcopolymerlayerwithoutsilverhighsensitivityofdetectioncanbeachievedusingtheBCP-Agnanoparticles(blank)arealsodepictedinFigure6a.ThelayerastheSERSsubstrate.blanksubstratedoesnotshowanysignificantRamansignals,ToextendthefurtherapplicabilityoftheseblockcopolymerwhichclearlyindicatesthattheSERSintensityincreasesnanostructures,wehavefabricatedmetalnanoparticle-deco-dramaticallyforthespectrarecordedfromthesurfaceoftheratedcompositeBCPmembranesusingPS-b-PAA.Theseblockcopolymerlayerincorporatedwithsilvernanoparticle.Ascompositemembraneswereusedasdipcatalystsfortwoseeninthefigure,Ramansignalsareclearlyvisibledowntoamodelcatalysisreactions:thereductionofnitrophenolandthemicromolarconcentrationofRBinthepresenceofthesilverSuzuki−Miyaurareaction.Theschematicdiagramforthenanoparticle-embeddedblockcopolymerlayer.ThecalculatedpreparationoftheAgNPanchoredBCPmembraneisanalyticalenhancementfactor(AEF)is4.0×106(SupportingdepictedinFigure7.ThecompositemembranesfabricatedInformation,FigureS6),whichishigherthanorcomparabletofrom70/30,50/50,and30/70methanol/chloroformsolventthosereportedearlierfortheSERSsubstratefabricatedusingcompositionsaredesignatedasBCP73,BCP55,andBCP37,blockcopolymer-basedstrategies(TableS1,Supportingrespectively.BCPcompositemembraneswerepreparedbyInformation).ForthequantitativeanalysisofRB,theintensityspin-coatingBCPsolutiononanylonsubstrateasdescribedinoftheRamansignalat1507cm−1wasselected.TheplotoftheExperimentalSection.Similartothesiliconsubstrate,inintensityversuslog(concentration)(Figure6b)showsasitureductionoftheAgprecursorwaschosentoloadtheAggradualdecreaseinintensitywiththeloweringoftheanalytenanoparticlesasmentionedinFigure7.ToloadtheAg2450https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

6Langmuirpubs.acs.org/LangmuirArticleFigure8.TEManalysisofAgNPsobtainedfromAg-NP-immobilizedBCPcompositemembranes.(a−c)RepresentativeTEMimagesoftheAgNPsobtainedfromBCPcompositemembranes.(a)BCP73,(b)BCP55,(c)BCP37,and(d)HRTEMimage(insetSAEDpattern)ofonesuchtypicalsilvernanoparticleobtainedfromBCP55.nanoparticles,BCPmembranesweresoakedinanaqueousAgNP-immobilizedmembraneshowsuniformcolorthrough-solutionofAgNO3for2handwashedthoroughlywithwaterout,indicatingthehomogeneousdistributionofnanoparticlestoremovetheweaklyabsorbedAgNO3.ThehydrophilicPAAinthemembrane.Toconfirmtheroleofblockcopolymeronblockmobilizedonthemembranesurfacewillfacilitatethethedepositionofsilvernanoparticles,blanknylonmembranesinteractionofthenanoparticlewiththereactantmolecules.Atwithoutblockcopolymerdepositionweresimilarlytreatedthesametime,theefficientcatalysisalsodemandsthatthewithAgNO3andNaBH4,andnoyellowcolorationoftheparticlesshouldbeclosetothefilmsurface.Thethicknessofmembranewasobserved.Inordertocarryoutdetailedthemembraneissufficientlythick(∼150μm),mechanicallycharacterizationoftheAgNPs,thenanoparticle-immobilizedstable,androbustforrepeateduseinthereactionmixturemembraneswerefurthersoakedincorrespondingmixedinvolvingstirringandwashinginbetweenuses.TheBCPsolventandthedispersionswereusedforTEManalysis.ThemembranewassubsequentlyimmersedinNaBH4solution(1particlesizeoftheAgNPswascalculatedfromtheTEMmg/mLinmethanol),andthereductionproceededveryfastimages,andthestatisticalresultsaregivenintheinsetofwiththeincorporationofAgNPinthecompositemembrane,Figure8a−c.TheaveragediametersoftheAgNPsare15.1,whichcanbeobservedbyavisualcolorchangeofthe7.9,and13.2nmforBCP73,BCP55,andBCP37,membrane(Figure7).Thepristineblockcopolymerrespectively,clearlyindicatingthattheAgNPimmobilizedmembraneiswhiteinappearance,whereasthecoloroftheinthecompositeBCPmembrane(BCP55)preparedfromthemembraneturnedyellowafterAgdeposition.Theas-preparedmethanol/chloroform(50:50)BCPsolutionisthesmallest.2451https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

7Langmuirpubs.acs.org/LangmuirArticleFigure9.(a)Electronicabsorptionspectraofthereactionmixture([p-NP]=0.11mM,[NaBH4]=11mM)at25°CasafunctionoftimeinthepresenceoftheAgNP-BCPcompositemembrane.(b)PlotsofA/A0andln(A/A0)vstime.(c)Reactionyieldat25minforthereductionofp-NPbyNaBH4at25°C([p-NP]=0.11M,[NaBH4]=11mM,volumeofreactionmixture=2.5mL)inrepeatedrunscatalyzedbytheAgNP-BCPcompositemembrane.(d)PlotofAasafunctionoftimeinanexperimentinwhichthecatalystfilmwasremovedandreinserted.ThesizeofthenanoparticlealsodependsonthenatureoftheThecatalysiswasalsoobservedvisuallybyobservingthecolorself-assembledstructureonwhichitgrows.Theselectedareachangeofthesolutionfrombrightyellowtocolorless.Theelectrondiffraction(SAED)pattern(Figure8d)showscircularkineticsofthecatalysisreactionwasstudiedbydeterminingringswithdiscretedotswhichcanbeindexedas(111),(200),thereductionofp-NPatdifferenttimesthroughUV−vis(220),and(311)planes(JCPDS04-0783).Theseplanesmeasurements.Figure9ashowsthetypicalUV−visabsorptioncorrespondtoface-centeredcubic(fcc)Agwithahighstudyofthecompositemembrane-catalyzedreaction([p-NP]crystallinenatureofthenanoparticle.Thelatticefringespacing=0.11mM,[NaBH4]=11mM)at25°C,wherethepeak(Figure8d)ofthesilvernanoparticleswasdeterminedtobesystematicallydecayswithtime.Thecatalyticreductionofp-1.12Å,correspondingtothe(220)planespacingofface-NPonthemetalnanoparticleintheconcentrationrangeofupcenteredcubic(fcc)silver.61CompositemembraneBCP55to∼10−4Mgenerallyfollowpseudo-first-orderkineticswithhavingthesmallestsilvernanoparticleswerefurtherusedforrespecttometalNPinthepresenceofanexcessconcentration63,64thedipcatalysisexperiment.ThecatalyticactivityoftheAgofNaBH4.However,inourcase,theabsorbanceratio(A/NP-decoratedblockcopolymercompositemembranewasA0)ortheC/C0,whichisalinearfunctionoftimewithevaluatedforthereductionofp-nitrophenol(p-NP)top-correlationcoefficient0.989forareactionmixturehavinganaminophenol(p-AP)byexcessNaBH4asamodelreactiondueinitialconcentrationratioofp-NP/NaBH4=1:100clearlytoitseasymonitoringofthereactantandproductthroughindicateszeroth-orderkinetics.Thezeroth-orderkineticsisUV−visspectroscopy.Thisreductionreactionisathermody-confirmedbyalinearplotofA/A0vstimewiththesameslopenamicallyfeasibleprocess(E0forp-NP/p-AP=−0.76Vandfortheotherinitialp-NPconcentration([p-NP]=0.15mM,HBO/BH−=−1.33V)butkineticallysluggishifnocatalyst[NaBH]=15mM)andalsothelineardependenceofA/A3344062isintroducedintothereactionmixture.Afterthesilverwithtimeforotherreactionswithdifferentratiosoftheinitialnanoparticle-decoratedcompositemembranewasintroducedconcentrationofp-NPwithNaBH4[([p-NP]=0.11mM,intotheaqueoussolutionscontainingNaBH4andp-NP,the[NaBH4]=22mM,[p-NP]/[NaBH4]=200,[p-NP]=0.11peakcorrespondingtop-NP(λmax=400nm)startstomM,[NaBH4]=5.5mM,and[p-NP]/[NaBH4]=50)decrease,withaconcomitantincreaseinthepeakofp-AP(SupportingInformationFiguresS7andS8).Therateclearlyindicatingthereductionofthenitrotoaminogroup.constantdeterminedfromthelinearplotsdepictedinFigure2452https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

8Langmuirpubs.acs.org/LangmuirArticleFigure10.SchemeoftheSuzuki−MiyaurareactionperformedusingthePdNP-BCPmembraneasacatalyst.9bisequalto5.0×10−6moldm−3min−1.Thezeroth-orderisshowninFigure9c,whichshowsthatthereactionyieldkineticsofp-NPreductionwithasimilarrateconstantvaluedecreasesfrom99.5to94.2%over15cyclesusingthesamewasalsoreportedforcatalyticprocessinsystemssuchasFe−film.SwitchingthereactionofforonbyremovingorAunanoparticlessupportedongrapheneoxide(k=8.21×reinsertingthecatalystmembraneintothereactionmixture10−6moldm−3min−1)65andonAgorAunanoparticlesgrown(0.2mmolp-NP,2.8mL;0.3molNaBH,0.2mL)was4oncalciumalginatebeads(kintherangeof(1.4−2)×10−6demonstratedthroughanexperiment.Thequickresponseofmoldm−3min−1).65Heterogeneouscatalysissuchasthethereactiontowardtheremovalorreinsertionofthereductionofp-nitrophenolinthepresenceofmetalnano-membraneisshowninFigure9d.Thisobservationclearly66,67particlesusuallyoccursthroughfoursteps:(1)adsorptionshowsthatthereisnegligibleleachingofsilvernanoparticlesofthereactantmoleculetothesurface,(2)diffusionofthefromthemembraneintothereactionmedium.Anysignificantmoleculetotheactivesiteandformationofthesurfacestructuralandchemicalchangeinthecatalystmembraneaftercomplex,(3)reactionofthecomplextoformtheadsorbedreactionwasverifiedbyTEMandXPSstudy.TheTEMstudyproduct,and(4)finallydesorptionoftheproduct.Inourcase,(FigureS10)clearlyindicatesthesimilarsizedistributionofthemembranecatalystundergoesazeroth-orderreactionintheimmobilizednanoparticlesintheusedmembranewhichstep3isprobablytheslowestone.Themechanismofcomparedtothoseinthefreshmembrane(Figure8b).TheheterogeneouscatalysisdependsonmanyfactorssuchastheEDXstudyalsoshowsaAgpeakwithasufficientcount.Theadsorptionbehaviorofthemolecule,theconcentration,theXPSstudy(FigureS11)oftheusedfilmrevealsthesufficientnatureofthesubstrate,andthesurfacecoverage.IfthecountofAg,wheretheAgNPshaveasinglepredominantadsorptiontendencyofthecatalyticsurfaceisstrong,thenvalencestate,Ag(0).Theeffectivenessofthecatalystadsorptionsiteswillbecompletelycoveredbythereactantmembraneasadipcatalystwasinvestigatedbyincreasingmoleculesoverarangeofpressure(P)andconcentration(c),theamountofp-nitrophenol([p-NP]/[NaBH4]=1:100)inandtheratewillbeindependentofPandCaslongasthethereactionmixturewhilekeepingtheamountofcatalystAgsurfaceiscovered.Inthecaseofthecompositemembrane,theunchangedinthefilm(Agcontent=0.8μmol).Thereactionsilvernanoparticlesareanchoredbythecarboxylicgroup,wascarriedoutforastipulatedperiodoftime,20min,at25whichmayresultinastrongtendencyofnitrophenolor°C.ItwasobservedthatthefilmcouldcatalyzethereductionNaBH4adsorptiononthecatalyticallyactivesites.Sinceourofupto0.1mmolp-NPinasinglerun.Thisimpliesahighresultindicatingzeroth-orderkineticsisincontradictionwithturnovernumber(TON)of≥126(SupportingInformation).63,64otherliteraturedatadepictingmostlyfirst-orderkinetics,TheTOFforthereactioncatalyzedbytheAg-BCPmembranewehavealsoperformedacatalysisstudyonareactionmixtureis0.105s−1,whichisquitehighandcomparabletoother7havingtwoNPconcentrations(0.09and0.075mM)intheearlierreportedliteraturevalues.lowerrange,keepingtheratioofNaBH4([p-NP]/[NaBH4]=Todemonstratetheversatilityofourapproachtofabricating1:100)constant.TheresultsareshowninFigureS9intheacatalystmembranebydepositingmetalnanoparticles,weformsofA/A0vstimeandln(A/A0)vstimeplots.ItishavealsopreparedaPdnanoparticle(PdNP)-decoratedBCPinterestingthatthelineardependencyofln(A/A0)withtimemembraneusingtheblockcopolymermicelle-stabilizedPdNPforthesetwop-NPconcentrationsclearlyindicatesfirst-ordersolutiondiscussedintheExperimentalSection.FigureS12kinetics.TheapparentrateconstantdeterminedfromtheshowstheUV−visspectraofthePd(OAc)2-BCPsolutionslopesofthelogarithmicplotsare2.8×10−3and3.0×10−3beforeandafterreductionbyNaBH.TheUV−visspectrain4s−1,whichisofthesameorderforothersilvernanoparticle-solutionshowthepeaksofprecursorsaltwhichdisappears67baseddipcatalystsystemsreportedintheearlierliterature.Inafterthereductionandlocalsurfaceplasmonresonancethecaseoflow-concentration-rangep-NP,thereactionfollows(LSPR)absorptionappears.Thechemicalsurfacecompositionfirstorder,whichmaybeduetotheloweradsorptionrateofofBCP-immobilizedpalladiumnanoparticlesandthevalencethereactant,andinsuchcases,thesurfaceofthemembraneisstateofpalladiumwereinvestigatedbyX-rayphotoelectronnotfullycovered.Tochecktherecyclabilityofthecatalyticspectroscopy(XPS)andareshowninFigureS13(Supportingmembrane,wehaveinvestigatedtherepeateduseofthesameInformation).ThePd3dsignalsaredeconvolutedintomembraneinmultiplereactionruns(concentration0.11mM)componentswhichshowstwopredominantpeaksat340.5ofp-NPfor25min.Aftereachrun,thefilmwasremoved,eV(Pd3d3/2)and335.3eV(Pd3d5/2)correspondingto68washedwithwaterandethanol,anddriedundervacuumfor30Pd(0)species.Twominorpeaksat342.0eV(Pd3d3/2)andminbeforeinsertingitintothereactionsetup.Thecatalytic337.1eV(Pd3d5/2)areassignedtoPd(II)species.TheXPSactivitywascheckedforupto15runs,andtheconversionwasstudyclearlyindicatesthatPdNPshaveapredominantvalencecheckedthroughUV−visspectra.ItwasobservedthatthestatewhichismetallicPd.Bymeasuringtherelativeintensityabsorbanceofthemixtureat400nmcorrespondingtop-NPofthepeakareas,thepercentageofPd(0)speciesintheblockforeachrunwasverylow,indicatingitsusabilityformultiplecopolymer-embeddedPdNPsisaround90.1%.Pdnano-times.Theyieldofthereactionafter25minfordifferentcyclesparticlesimmobilizedinablockcopolymercomposite2453https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

9Langmuirpubs.acs.org/LangmuirArticlemembranewerefurthercharacterizedbyTEManalysis.ThesubstratesshowsexcellentSERS-basedsensingperformancerepresentativeTEMimagealongwiththesizedistributionisformodelanalyterhodamineBforupto10−6MconcentrationdepictedinFigureS14(a,b)(SupportingInformation).Thewithawell-definedcalibrationcurve.Furthermore,wehaveaveragediameteroftheimmobilizedPdNPsisaround8.7nm.demonstratedafacileapproachtothepreparationofmetalTheselected-areaelectrondiffraction(SAED)pattern(FigureNP-immobilizedBCPmembranesasanefficientdipcatalystS14c)showsdiscretedotswithcircularringsclearlyindicatingforthetwomodelreactions:thereductionofnitrophenolandthecrystallinenatureofthenanoparticleandcorrespondingtotheSuzuki−Miyaurareactionofiodobenzeneor2,7-diiodo-palladiumface-centeredcubicstructure.ThePd-BCPfluorenewithphenylboronicacid.TheAgNP-decoratedfilmcompositemembranewasfurtherusedasadipcatalystforshowshighefficiencyandextensivereusabilityinprototypetheSuzuki−Miyaurareactionoftwodifferentaromaticsystemsreactionssuchasthereductionofnitrophenolbysodium(iodobenzeneand2,7-diiodofluorene)asshowninFigure10.borohydridewithaveryhighturnovernumber,>126(forHere,ethanolwasnaturallyusedasasolventforthereactionsingleuse),whereasthePd-NP-immobilizedfilmalsoshowsabecauseethanolisanonsolventforthemajorityoftheblockhigh,∼100%,reactionyield,extensivereusability,andPSandwillnotdissolvetheblockcopolymerlayer.Ethanolisapplicablefordifferentaromaticsystems.Thisworkprovidesalsoanoptimalsolventforthisreactionbecausethereactionisanewplatformforthedesignandsynthesisofafast,hasnoneedofphase-transferreagents,requiresonlyafunctionalizable,flexible,highlymechanicallystabledipsimpleworkupofthereactionmixture,andhasaquantitativecatalyst,whichishighlydemandedinthecatalyticproductionyield.Wehaveselected80°Casthereactiontemperature,andofvalue-addedchemicalsandenvironmentalapplicationssuchthereactioniscarriedoutusing1mmolofAr−Iand1.1mmolaswastewatertreatment.ofphenylboronicacid.ThesuccessfulformationoftheproductthroughtheSuzuki−Miyaurareactioninthepresence■ASSOCIATEDCONTENTofthePdNP-BCPcompositemembranewasconfirmedby*sıSupportingInformationNMR(SupportingInformationFigureS15−S18)ofthefinalproduct.Inthecaseofiodobenzene,theprogressoftheTheSupportingInformationisavailablefreeofchargeatreactioninthepresenceofthecatalystmembranewashttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03505.monitoredbyaTLCstudyofthereactionmixtureatdifferentCharacterization,turn-overnumbercalculation,AFMoftimesandwasalsowellindicatedbythesteadyincreaseintheblockcopolymerfromchloroformandBCP-AgNPafteremissionintensityatλmax=327nmcorrespondingtobiphenylargonplasma,TEMimageofblockcopolymermicellesemissionwithtime(FigureS19).Thereactionmixtureatzerofrommethanol/chloroform,schematicrepresentationoftimealsoshowssomefluorescenceintensitywhichisduetothepossibleassemblyoftheblockcopolymer,XPS69fluorescencefrombothphenylboronicacidandiodobenzene.resultsforAgNPs,comparativeRamanspectraforEFOnlyasingleproductfromtheTLCstudywasobserved,andcalculation,kineticplotsforthereductionofnitro-thereactionwascompletedwithin5h.Tostudythephenol,TEMimagesandEDXspectraofAgNPintherecyclabilityoftheBCPmembraneasadipcatalyst,wehavemembraneafteritsuseforreaction,X-rayphotoelectronusedthePdNP-BCPmembrane10timesandperformedthespectroscopyofthedirectfilmafterreaction,UV−visreactionfor7h.Forthefirstrun(1mmolofiodobenzeneandspectraofaPdnanoparticle,XPSresultsforPdNPs,1.1mmolofphenylboronicacid),∼100%yieldwasobserved.TEMimagesofthePdNP,NMRspectraoftheForthenextrun,thecatalystfilmwastakenoutofthereactionproductsintheSuzuki−Miyaurareaction,time-depend-mixture,washed,dried,andusedforthenextrunentPLspectraofthereactionmixture,plotoftheyield(ExperimentalSection).Wehavecheckedtherecyclabilityofofreactionformultipleuses,comparisonofSERSthecompositemembraneupto10cycles,andhasanearlyperformance,andreferences(PDF)100%yield(FigureS20),whichclearlyindicatestheuseoftheblockcopolymermembraneasaviabledipcatalyst.Tofurtherinvestigatetheversatilityofthiscatalystmembrane,wehave■AUTHORINFORMATIONalsoperformedtheSuzuki−MiyaurareactionusingalargerCorrespondingAuthoraromaticsystemsuchas2,7-diiodofluorenewithphenylBiplabKumarKuila−DepartmentofChemistry,Instituteofboronicacid.ThiscatalyticmembranegivesexcellentresultsScience,BanarasHinduUniversity,Varanasi,UttarPradeshfortheformationofthe2,7-diphenyl-9H-fluoreneproductwith221005,India;orcid.org/0000-0002-1646-2870;90%yield.TheformationoftheproductwasconfirmedbyEmail:bkkuila.chem@bhu.ac.inNMRstudy(FiguresS17andS18).ThedetailedrecyclabilityofthecatalystanditsapplicabilitytootheraromatichalidesAuthorsrequiredfurtherstudy,butthepresentstudyclearlyindicatesSoumiliDaripa−DepartmentofChemistry,InstituteofthattheBCP−compositemembranederivedfromblockScience,BanarasHinduUniversity,Varanasi,UttarPradeshcopolymermicellesishighlyeffectiveasadipcatalystforthe221005,IndiaSuzuki−Miyaurareaction.RampalVerma−DepartmentofChemistry,InstituteofScience,BanarasHinduUniversity,Varanasi,UttarPradesh■CONCLUSIONS221005,IndiaInthiswork,wehavestudiedtheself-assemblyofamphiphilicDebanjanGuin−DepartmentofChemistry,InstituteofblockcopolymerPS-b-PAAinmixedsolventmethanol/Science,BanarasHinduUniversity,Varanasi,UttarPradeshchloroformandusedtheseself-assembledmicellesasa221005,India;orcid.org/0000-0001-6279-3016templateforthefabricationofverydensearraysofmetalChanchalChakraborty−DepartmentofChemistry,BITSnanoparticlessuchassilverandpalladium.Asilvernano-Pilani,HyderabadCampus,ShameerpetMandal,Hyderabadparticle-immobilizedblockcopolymerlayeronsilicon500078,India;orcid.org/0000-0002-4829-13672454https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

10Langmuirpubs.acs.org/LangmuirArticleKamlendraAwasthi−DepartmentofPhysics,Malaviya(15)Ahmed,S.R.;Kim,J.;Tran,V.T.;Suzuki,T.;Neethirajan,S.;NationalInstituteofTechnologyJaipur,Jaipur,RajasthanLee,J.;Park,E.Y.InSituSelf-AssemblyofGoldNanoparticleson302017,India;orcid.org/0000-0002-4407-1914HydrophilicandHydrophobicSubstratesforInfluenzaVirus-sensingPlatform.Sci.Rep.2017,7,44495.Completecontactinformationisavailableat:(16)He,J.;Kunitake,T.FormationofSilverNanoparticlesandhttps://pubs.acs.org/10.1021/acs.langmuir.0c03505NanocratersonSiliconWafers.Langmuir2006,22,7881−7884.(17)Wang,T.C.;Rubner,M.F.;Cohen,R.E.PolyelectrolyteNotesMultilayerNanoreactorsforPreparingSilverNanoparticleCompo-Theauthorsdeclarenocompetingfinancialinterest.sites:ControllingMetalConcentrationandNanoparticleSize.Langmuir2002,18,3370−3375.■(18)Cialla,D.;Hübner,U.;Schneidewind,H.;Möller,R.;Popp,J.ACKNOWLEDGMENTSProbing.InnovativeMicrofabricatedSubstratesfortheirReproducibleB.K.K.acknowledgesthecentralinstrumentalfacilityoftheSERSActivity.ChemPhysChem2008,9,758−762.chemistrydepartmentatBHUforprovidingtheexperimental(19)Loo,Y.-L.;Willett,R.L.;Baldwin,K.W.;Rogers,J.A.facilities.D.G.acknowledgesSERB(DSTprojectEMR/2016/InterfacialChemistriesforNanoscaleTransferPrinting.J.Am.Chem.000767)forfinancialsupport.K.A.thankstheMaterialsSoc.2002,124,7654−7655.ResearchCentre,MNITJaipurfortheuseoftheircharacter-(20)Warren,S.C.;Messina,L.C.;Slaughter,L.S.;Kamperman,M.;izationfacilities.B.K.K.acknowledgesSERB(DSTprojectZhou,Q.;Gruner,S.M.;DiSalvo,F.J.;Wiesner,U.OrderedCRG/2020/003132)forfinancialsupport.MesoporousMaterialsfromMetalNanoparticle−BlockCopolymerSelf-Assembly.Science2008,320,1748.■(21)Kuila,B.K.;Formanek,P.;Stamm,M.MultilayerPolymerREFERENCESThinFilmsforFabricationofOrderedMultifunctionalPolymer(1)Shin,D.O.;Jeong,J.-R.;Han,T.H.;Koo,C.M.;Park,H.-J.;Nanocomposites.Nanoscale2013,5,10849−10852.Lim,Y.T.;Kim,S.O.APlasmonicBiosensorArraybyBlock(22)Kuila,B.K.;Stamm,M.SupramolecularComplexofPolyCopolymerlithography.J.Mater.Chem.2010,20,7241−7247.(styrene)-b-Poly(4-vinylpyridine)and1-PyrenebutyricAcidinThin(2)Teperik,T.V.;GarcíadeAbajo,F.J.;Borisov,A.G.;Film.Macromol.Symp.2011,303,85−94.Abdelsalam,M.;Bartlett,P.N.;Sugawara,Y.;Baumberg,J.J.(23)Kuila,B.K.;Stamm,M.Transparent,VersatileChemicalVaporOmnidirectionalAbsorptioninNanostructuredMetalSurfaces.Nat.SensorusingSupramolecularAssemblyofBlockCopolymerandPhotonics2008,2,299−301.CarbonNanotubes.Macromol.RapidCommun.2010,31,1881−1885.(3)Lee,J.-S.;Kim,Y.-M.;Kwon,J.-H.;Shin,H.;Sohn,B.-H.;Lee,J.(24)Khawas,K.;Daripa,S.;Kumari,P.;Kuila,B.K.ElectrochemicalTunableMemoryCharacteristicsofNanostructured,NonvolatileandElectronicPropertiesofTransparentCoatingfromHighlyChargeTrapMemoryDevicesBasedonaBinaryMixtureofMetalNanoparticlesasaChargeTrappingLayer.Adv.Mater.2009,21,SolutionProcessableGrapheneUsingBlockCopolymerSupra-178−183.molecularAssembly:ApplicationTowardMetalIonSensingand(4)Feng,J.;Gao,C.;Yin,Y.StabilizationofNobleMetalResistiveSwitchingMemory.ACSOmega2018,3,7106−7116.NanostructuresforCatalysisandSensing.Nanoscale2018,10,(25)Mai,Y.;Eisenberg,A.Self-AssemblyofbBlockCopolymers.20492−20504.Chem.Soc.Rev.2012,41,5969−5985.(5)Rodrigues,T.S.;daSilva,A.G.M.;Camargo,P.H.C.(26)Cameron,N.S.;Corbierre,M.K.;Eisenberg,A.AsymmetricNanocatalysisbyNobleMetalNanoparticles:ControlledSynthesisAmphiphilicBlockCopolymersinSolution:aMorphologicalfortheOptimizationandUnderstandingofActivities.J.Mater.Chem.Wonderland.Can.J.Chem.1999,77,1311−1326.A2019,7,5857−5874.(27)Madhuri,U.D.;Saha,J.;Radhakrishnan,T.P.DipCatalysts’(6)Xiang,Z.;Chen,Y.;Liu,Q.;Lu,F.AHighlyRecyclableDip-BasedonPolymer-MetalNanocompositeThinFilms:CombiningCatalystProducedfromPalladiumNanoparticle-EmbeddedBacterialSoft-ChemicalFabricationwithEfficientApplicationandMonitoring.CelluloseandPlantFibers.GreenChem.2018,20,1085−1094.ChemNanoMat2018,4,1191−1201.(7)Hariprasad,E.;Radhakrishnan,T.P.AHighlyEfficientand(28)Madhuri,U.D.;Radhakrishnan,T.P.InsulatingPolymer-ExtensivelyReusable“DipCatalyst”BasedonaSilver-Nanoparticle-HydrogelNanocompositeThinFilm-BasedCatalyticElectrodeforEmbeddedPolymerThinFilm.Chem.-Eur.J.2010,16,14378−84.EfficientOxygenEvolutionReaction.ChemElectroChem2019,6,(8)Wang,X.;Shi,W.;Shea,G.;Mua,L.Surface-EnhancedRaman1984−1989.Scattering(SERS)onTransitionMetalandSemiconductor(29)Lü,J.;Yang,Y.;Gao,J.;Duan,H.;Lü,C.ThermoresponsiveNanostructures.Phys.Chem.Chem.Phys.2012,14,5891−5901.AmphiphilicBlockCopolymer-StablilizedGoldNanoparticles:Syn-(9)Lu,Y.;Liu,G.L.;Lee,L.P.High-DensitySilverNanoparticlethesisandHighCatalyticProperties.Langmuir2018,34,8205−8214.FilmwithTemperature-ControllableInterparticleSpacingfora(30)Wang,Y.;Wei,G.;Zhang,W.;Jiang,X.;Zheng,P.;Shi,L.;TunableSurfaceEnhancedRamanScatteringSubstrate.NanoLett.Dong,A.ResponsiveCatalysisofThermoresponsiveMicelle-2005,5,5−9.SupportedGoldNanoparticles.J.Mol.Catal.A:Chem.2007,266,(10)Syafiuddin,A.;Salmiati;Salim,M.R.;BengHongKueh,A.;233−238.Hadibarata,T.;Nur,H.AReviewofSilverNanoparticles:Research(31)Wang,Y.;Wei,G.;Wen,F.;Zhang,X.;Zhang,W.;Shi,L.Trends,GlobalConsumption,Synthesis,Properties,andFutureSynthesisofGoldNanoparticlesStabilizedwithPoly(N-isopropyla-Challenges.J.Chin.Chem.Soc.2017,64,732−756.crylamide)-co-Poly(4-vinylpyridine)Colloidandtheirapplicationin(11)Chen,A.;Ostrom,C.Palladium-BasedNanomaterials:responsivecatalysis.J.Mol.Catal.A:Chem.2008,280,1−6.SynthesisandElectrochemicalApplications.Chem.Rev.2015,115,(32)Muehlethaler,C.;Leona,M.;Lombardi,J.R.ReviewofSurface11999−12044.EnhancedRamanScatteringApplicationsinForensicScience.Anal.(12)Burdusel,A.-C.;Gherasim,O.;Grumezescu,A.M.;Mogoanta̧,̆Chem.2016,88,152−169.L.;Ficai,A.;Andronescu,E.BiomedicalApplicationsofSilver(33)Zhang,W.;Li,B.;Chen,L.;Wang,Y.;Gao,D.;Ma,X.;Wu,A.Nanoparticles:AnUp-to-DateOverview.Nanomaterials2018,8,681.Brushing,aSimpleWaytoFabricateSERSActivePaperSubstrates.(13)Kastner,C.;Thü̈nemann,A.F.CatalyticReductionof4-Anal.Methods2014,6,2066−2071.NitrophenolUsingSilverNanoparticleswithAdjustableActivity.(34)Wu,S.;Shen,Y.;Jin,C.Surface-EnhancedRamanScatteringLangmuir2016,32,7383−7391.InducedbytheCouplingoftheGuidedModewithLocalizedSurface(14)Shulga,O.;Kirchhoff,J.R.AnAcetylcholinesteraseEnzymePlasmonResonances.Nanoscale2019,11,14164−14173.ElectrodeStabilizedbyanElectrodepositedGoldNanoparticleLayer.(35)Li,B.;Wang,T.;Su,Q.;Wu,X.;Dong,P.FabricationofAuElectrochem.Commun.2007,9,935−940.NanorodsbytheObliqueAngleDepositionProcessforTrace2455https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

11Langmuirpubs.acs.org/LangmuirArticleDetectionofMethamphetaminewithSurface-EnhancedRaman(53)Rolim,W.R.;Pelegrino,M.T.;Araujo,B.;de,L.;Ferraz,L.S.;́Scattering.Sensors2019,19,3742.Costa,F.N.;Bernardes,J.S.;Rodigues,T.;Brocchi,M.;Seabra,A.B.(36)Wang,Y.;Yan,B.;Chen,L.SERSTags:NovelOpticalGreenTeaExtractMediatedBiogenicSynthesisofSilverNano-NanoprobesforBioanalysis.Chem.Rev.2013,113,1391−1428.particles:Characterization,CytotoxicityEvaluationandAntibacterial(37)Chen,H.;Park,S.-G.;Choi,N.;Moon,J.-Il.;Dang,H.;Das,A.;Activity.Appl.Surf.Sci.2019,463,66−74.Lee,S.;Kim,D.-G.;Chen,L.;Choo,J.SERSImaging-Based(54)Dong,G.P.;Xiao,X.D.;Liu,X.F.;Qian,B.;Liao,Y.;Wang,AptasensorforUltrasensitiveandReproducibleDetectionofC.;Chen,D.P.;Qiu,J.R.FunctionalAgPorousFilmsPreparedbyInfluenzavirusA.Biosens.Bioelectron.2020,167,112496.Electrospinning.Appl.Surf.Sci.2009,255,7623−7626.(38)Arabi,M.;Ostovan,A.;Zhang,Z.;Wang,Y.;Mei,R.;Fu,L.;(55)He,D.;Hu,B.;Yao,Q.-F.;Wang,K.;Yu,S.-H.Large-ScaleWang,X.;Ma,J.;Chen,L.Label-FreeSERSDetectionofRaman-SynthesisofFlexibleFree-StandingSERSSubstrateswithHighInactiveProteinBiomarkersbyRamanReporterIndicator:TowardSensitivity:ElectrospunPVANanofibersEmbeddedwithControlledUltrasensitivityandUniversality.Biosens.Bioelectron.2021,174,AlignmentofSilverNanoparticles.ACSNano2009,3,3993−4002.112825.(56)Zhang,C.-L.;Lv,K.-P.;Cong,H.-P.;Yu,S.-H.Controlled(39)Li,K.R.;Stockman,M.I.;Bergman,D.J.Self-SimilarChainofAssembliesofGoldNanorodsinPVANanofiberMatrixasFlexibleMetalNanospheresasanEfficientNanolens.Phys.Rev.Lett.2003,91,Free-StandingSERSSubstratesbyElectrospinning.Small2012,8,227402.648−653.(40)Freeman,R.G.;Grabar,K.C.;Allison,K.J.;Bright,R.M.;(57)He,H.;Cai,W.;Lin,Y.;Dai,Z.SilverPorousNanotubeBuiltDavis,J.A.;Guthrie,A.P.;Hommer,M.B.;Jackson,M.A.;Smith,P.Three-DimensionalFilmswithStructuralTunabilityBasedontheC.;Walter,D.G.;Natan,M.J.Self-AssembledMetalColloidNanofiberTemplate-PlasmaEtchingStrategy.Langmuir2011,27,Monolayers:AnApproachtoSERSSubstrates.Science1995,267,1551−1555.1629−1632.(58)Zhang,C.-L.;Lv,K.-P.;Huang,H.-T.;Cong,H.-P.;Yu,S.-H.(41)Lin,D.;Wu,Z.;Li,S.;Zhao,W.;Ma,C.;Wang,J.;Jiang,Z.;Co-assemblyofAuNanorodswithAgNanowireswithinPolymerZhong,Z.;Zheng,Y.;Yang,X.Large-AreaAu-Nanoparticle-NanofiberMatrixforEnhancedSERSPropertybyElectrospinning.FunctionalizedSiNanorodArraysforSpatiallyUniformSurface-Nanoscale2012,4,5348−5355.EnhancedRamanSpectroscopy.ACSNano2017,11,1478−1487.(59)Zhang,J.;Lim,X.;Sun,X.;Li,Y.SurfaceEnhancedRaman(42)Hu,Y.;Xuan,Y.;Wang,X.;Deng,B.;Saei,M.;Jin,S.;ScatteringEffectsofSilverColloidswithDifferentShapes.J.Phys.Irudayaraj,J.;Cheng,G.J.SuperplasticFormationofMetalChem.B2005,109,12544−12548.NanostructureArrayswithUltrafineGaps.Adv.Mater.2016,28,(60)Lin,S.;Hasi,W.-L.-J.;Lin,X.;Han,S.-q.-g.-w.;Lou,X.-T.;9152−9162.Yang,F.;Lin,D.-Y.;L,Z.-W.RapidandSensitiveSERSMethodfor(43)Wang,Y.;Becker,M.;Wang,L.;Liu,J.;Scholz,R.;Peng,J.;DeterminationofRhodamineBinChiliPowderwithPaper-BasedGösele,U.;Christiansen,S.;Kim,D.H.;Steinhart,M.Nano-Substrates.Anal.Methods2015,7,5289−5294.structuredGoldFilmsforSERSbyBlockCopolymer-Templated(61)Maduraiveeran,G.;Ramaraj,R.SilverNanoparticlesEmbeddedGalvanicDisplacementReactions.NanoLett.2009,9,2384−2389.inAmine-FunctionalizedSilicateSol−GelNetworkAssemblyfor(44)Lu,J.;Chamberlin,D.;Rider,D.A.;Liu,M.;Manners,I.;SensingCysteine,AdenosineandNADH.J.Nanopart.Res.2011,13,Russell,T.P.UsingaFerrocenylsilane-BasedBlockCopolymerasa4267−4276.TemplatetoProduceNanotexturedAgSurfaces:Uniformly(62)Liu,X.-Y.;Cheng,F.;Liu,Y.;Liu,H.-J.;Chen,Y.PreparationEnhancedSurfaceEnhancedRamanScatteringActiveSubstrates.andCharacterizationofNovelThermoresponsiveGoldNanoparticlesNanotechnology2006,17,5792−5797.andtheirResponsiveCatalysisOroperties.J.Mater.Chem.2010,20,(45)Shen,Y.;Liu,Y.;Wang,W.;Xu,F.;Yan,C.;Zhang,J.;Wang,360−368.(63)Fedorczyk,A.;Ratajczak,J.;Kuzmych,O.;Skompska,M.J.;Yuan,A.AuNanoclusterArraysonSelf-assembledBlockCopolymerThinFilmsasHighlyActiveSERSSubstrateswithKineticStudiesofCatalyticReductionof4-NitrophenolwithNaBH4byMeansofAuNanoparticlesDispersedinaConductingPolymer.J.ExcellentReproducibility.RSCAdv.2016,6,38716−38723.SolidStateElectrochem.2015,19,2849−2858.(46)Cho,W.J.;Kim,Y.;Kim,J.K.Ultrahigh-DensityArrayofSilver(64)Wunder,S.;Polzer,F.;Lu,Y.;Mei,Y.;Ballauff,M.KineticNanoclustersforSERSSubstratewithHighSensitivityandExcellentAnalysisofCatalyticReductionof4-NitrophenolbyMetallicReproducibility.ACSNano2012,6,249−255.NanoparticlesImmobilizedinSphericalPolyelectrolyteBrushes.J.(47)Chang,H.;Kang,H.;Yang,J.-K.;Jo,A.;Lee,H.-Y.;Lee,Y.−Phys.Chem.C2010,114,8814−8820.S.;Jeong,D.H.AgShell−AuSatelliteHetero-Nanostructurefor(65)Gupta,V.K.;Atar,N.;Yola,M.L.;Ustundag,Z.;Uzun,L.AUltra-Sensitive,Reproducible,andHomogeneousNIRSERSActivity.NovelMagneticFe@AuCcore-ShellNanoparticlesAnchoredACSAppl.Mater.Interfaces2014,6,11859−11863.GrapheneOxideRecyclableNanocatalystfortheReductionof(48)Zakia,M.;Song,H.;Song,C.H.;Jin,S.-M.;Lee,E.;Won,Y.S.;NitrophenolCompounds.WaterRes.2014,48,210−217.Kim,K.;Kim,K.-S.;Yoon,J.;Yoo,S.Scattering-MediatedAbsorption(66)Saha,S.;Pal,A.;Kundu,S.;Basu,S.;Pal,T.PhotochemicalfromHeterogeneousNanoparticleAssembliesinDiblockCopolymerGreenSynthesisofCalcium-Alginate-StabilizedAgandAuNano-MicellesforSERSEnhancement.J.Mater.Chem.C2019,7,5051−particlesandTheirCatalyticApplicationto4-NitrophenolReduction.5058.Langmuir2010,26,2885−2893.(49)Mondal,S.;Rana,U.;Malik,S.FacileDecorationofPolyaniline(67)Rothenberg,G.Catalysis:ConceptsandGreenApplications;FiberwithAgNanoparticlesforRecyclableSERSSubstrate.ACSWiley-VCHVerlagGmbH&Co.KGaA:Weinheim,2008.Appl.Mater.Interfaces2015,7,10457−10465.(68)Yang,S.;Dong,J.;Yao,Z.;Shen,C.;Shi,X.;Tian,Y.;Lin,S.;(50)Zhu,H.;Lussier,F.;Ducrot,C.;Bourque,M.-J.;Spatz,J.P.;Zhang,X.One-PotSynthesisofGraphene-SupportedMonodisperseCui,W.;Yu,L.;Peng,W.;Trudeau,L.-E.;Bazuin,C.G.;Masson,J.-F.PdNanoparticlesasCatalystforFormicAcidElectro-oxidation.Sci.BlockCopolymerBrushLayer-TemplatedGoldNanoparticlesonRep.2015,4,4501.NanofibersforSurface-EnhancedRamanScatteringOptophysiology.(69)Li,Y.;Hong,X.M.;Collard,D.M.;El-Sayed,M.A.SuzukiACSAppl.Mater.Interfaces2019,11,4373−4384.Cross-CouplingReactionsCatalyzedbyPalladiumNanoparticlesin(51)Hu,Y.;Ge,J.;Lim,D.;Zhang,T.;Yin,Y.Size-ControlledAqueousSolution.Org.Lett.2000,2,2385−2388.SynthesisofHighlyWater-SolubleSilverNanocrystals.J.SolidStateChem.2008,181,1524−1529.(52)Zanna,S.;Saulou,C.;Mercier-Bonin,M.;Despax,B.;Raynaud,P.;Seyeux,A.;Marcus,P.AgeingofPlasma-MediatedCoatingswithEmbeddedSilverNanoparticlesonStainlessSteel:AnXPSandToF-SIMSInvestigation.Appl.Surf.Sci.2010,256,6499−6505.2456https://dx.doi.org/10.1021/acs.langmuir.0c03505Langmuir2021,37,2445−2456

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭