《In fl uences of Polymer − Surfactant Interaction on the Drop Formation Process An Experimental Study - Dastyar et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleInfluencesofPolymer−SurfactantInteractionontheDropFormationProcess:AnExperimentalStudyPeymanDastyar,MoloudSadatSalehi,BaharFiroozabadi,*andHosseinAfshinCiteThis:Langmuir2021,37,1025−1036ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Theinteractionbetweenpolymerandsurfactantmoleculesaffectsthephysicalpropertiesofliquids,whichcouldbeofgreatimportanceinanabundanceofprocessesrelatedtodropformation.Polymerandsurfactantconcentrationisafactorthatdramaticallyimpactstheshapeofmolecularnetworksformedinthefluidbulkandthecharacteristicsofaformingdrop.Inthisstudy,thedeformationanddetachmentofaqueouscarboxymethylcellulose(CMC)solutions’dropscontainingdifferentconcentrationsofsodiumdodecylsulfate(SDS)arestudiedexperimentally.OurpurposeistodeterminetheeffectsofCMCandSDSconcentrationsontheparametersrelatedtotheformationprocess,includingdroplength,minimumneckthickness,andformationtime.OurresultsclearlyshowthattheincrementoftheSDSamountataconstantlowCMCconcentrationincreasesthedropdetachmentlengthandresultsinaslowerthinningprocess.However,athigherCMCconcentrations,thedroplimitinglengthreachesamaximum,indicatingtheeffectsofdisintegrationofmolecularstructuresastheSDSamountexceedsthecriticalconcentration.Moreover,thedropformationtimeisfoundtodecreasewiththeincrementoftheSDSconcentration,whichcouldbeattributedtothereductionofdynamicinterfacialtension.■INTRODUCTIONisusedwhosemoleculesarenegativelychargedand9amphiphilic.TheresultsofpreviousstudiesindicatethatThegrowthandbreakupofaliquiddropfromanozzleorDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at07:28:03(UTC).needlehavebeeninvestigatedbymanyresearchers1−4duetotheviscosityofaqueoussolutionsofthispolymerincreasesSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.withtheincrementofCMCconcentration.10Moreover,theitswiderangeofapplicationsencompassingcosmetics,inkjetprinting,emulsionmanufacturing,andcoating.5−7InmanyofpresenceofCMCmoleculesinwatercontributestothenon-11theseapplications,polymersandsurfactantsareusedtocontrolNewtonianpropertyofthesolution.Basedontheresearchdrops’characteristicsduetotheirsignificantimpactonthe12conductedbyGhannamandEsmail,CMC−watersolutionsliquids’physicalproperties.Therefore,understandingtheshowshear-thinningbehavior,whichincreaseswithariseininfluencesofpolymer−surfactantinteractiononfluidbehaviorCMCconcentrationbelow4%byweight.couldprovideadeepinsightintothephysicsunderlyingtheNumerousobservationsdemonstratethesignificantinflu-dropformationprocessinthepresenceofthesetwomaterials.enceofsurfactantsonthephysicalpropertiesofaqueousAddingapolymerisacommonwayofalteringthepolymersolutions.Byaddingasurfactanttoasolutionatlowrheologicalbehaviorofsolutions.Inthecaseswhereamphiphilicpolymermoleculesaredissolvedinaqueoussolutions,theyholdapositionsothattheirhydrophobicReceived:August24,2020portionshaveminimumcontactwithwatermolecules.AsaRevised:December26,2020result,polymermoleculesinteractwitheachotherandformPublished:January12,2021molecularstructures,whichleadstotheincrementofliquidviscosity.Inthepresentwork,carboxymethylcellulose8(CMC),whichisoneoftheforemostderivativesofcellulose,©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c024871025Langmuir2021,37,1025−1036
1Langmuirpubs.acs.org/LangmuirArticleconcentrations,surfactantmoleculesadsorbatthefluidinlowerinterfacialtension,whosevaluecouldbeinconstantinterfaceandcausetheinterfacialtensiontodecrease.Bydependingonthesurfactanttype,propertiesoftheliquid,flow35furtherincrementofthesurfactantamountandatarate,locationontheinterface,andtime.Kovalchuketal.concentrationcalledthecriticalassociationconcentrationmeasuredthedynamicinterfacialtensionofaformingdrop(CAC),itsmoleculesbegintointeractwiththepolymerusingthedynamicsofneck-thinningandshowedthatatthemoleculesandchangetheconformationofmolecularnet-momentsclosetopinch-off,theinterfacialtensionishigher13,14works.Thepolymer−surfactantinteractionleadstoathantheequilibriumvalue.Theyalsostatedthatasthelowerslopeofthereductionofinterfacialtensionintermsofsurfactantconcentrationincreases,thedynamicinterfacialsurfactantconcentration,comparedtothatbeforetheonsetoftensiondecreasesintheneckregion.Furthermore,insome15cases,surfactantdepletionfromtheinterfaceresultsinainteraction.Athighersurfactantconcentrations,itsmicellesforminthevicinityofthepolymermolecule’shydrophobicconcentrationgradientandMarangonistresses,whichcould16increasethedurationofrupture.36,37Thedropformationportion.Theslopeofthevariationofinterfacialtensionincreasesasthesurfactantconcentrationexceedsthepolymerprocesscontainingboththepolymerandsurfactanthasbeen38saturationpoint(PSP),atwhichpolymermoleculesbecomeconsideredbyRochéandKellay,whostudiedtheformation15,17ofaliquidcrystal(5CB)dropinanambientliquid,whichsaturatedwithsurfactantparticles.Withfurtherincrementofthenumberofsurfactantmolecules,theyadsorbatthecontainedasurfactant(sodiumdodecylsulfate,SDS)andaliquidinterfaceuptothepointwherethesurfactantpolymer(poly(vinylalcohol),PVA).Theynotedthatconcentrationreachesacertainvalue,calledthecriticalmicellesurfactantpresence,alongwithapolymer,changestheneck’s39concentration(cmc).Atconcentrationsabovethecmc,freeconformationandthinningdynamics.Also,Decheletteetal.micellesforminthefluidbulkandthesolution’sinterfacialexaminedthebreakupofaliquidjetcontainingapolymer18(XanthangumandCarbopol)andasurfactant(SDS).Theytensionnolongervaries.Inaddition,polymer−surfactant19concludedthataddingasurfactanttoapolymersolutiondelaysinteractionimpactstheviscosityofthesolutions,whichdependsondifferentfactorssuchastheconcentrationofthetheruptureandincreasesthebreakuplength.Recently,Tang40polymerandsurfactant,electrostaticchargeoftheirmolecules,etal.usedpolyethyleneglycol(PEG)andSurfynol465andtemperature.20Basedonpreviousinvestigations,the(S465)asadditivestodyeinksolutionstoobservetheimpactsviscosityofaqueoussolutionsofamphiphilicpolymersrisesofviscosityandinterfacialtensionondropletformation.withtheincrementofsurfactantconcentrationuptoacertainAsexplainedintheaboveparagraphs,deformationand21breakupofdropsinthepresenceofasurfactant35−37andapoint,andathighervalues,surfactanteffectsarelost.31Theformationofliquiddropsfromanozzlehasbeenatopicpolymerhavebeenconsideredbynumerousresearchers.ofinterestoverthelastfewdecades.TheprincipalpurposeofHowever,tothebestofourknowledge,afewworkshavebeennumerousresearcherswastounderstandthevariationsofdevotedtounderstandingtheeffectsofpolymer−surfactant38−40parametersrelatedtoaformingdrop,suchasdroplength,neckinteractionondropformation.Itiswell-knownthatthickness,formationtime,andsatellitedropsize,indifferentamphiphilicpolymerchainsandsurfactantaggregateschangecircumstances.22−26Shietal.27studiedtheeffectsofviscositytheiraqueoussolutions’properties,whichsignificantlydiffersonthedeformationofdrops.Theystatedthatincrementoffromthoseofsurfactantandnon-amphiphilicpolymerviscosityresultsinalongerdropelongation,whichstemsfromsolutions.Therefore,wecouldexpectdistinctivecharacteristicstheroleofviscousforcesindampeningthecapillarypressure.ofdropformationinthepresenceofsurfactantsandpolymersHendersonetal.28carriedoutanexperimentalstudytowithhydrophobicportions,whichhasbeenrarelypaid41observethedeformationofNewtoniandropsduringtheattentionto.Inourpreviousstudy,theformationofaqueousformationstage.Basedontheirresults,theincrementofglycerolsolutions’dropcontainingasurfactantwasexplored.interfacialtensiondecreasesthelimitingdroplength.ZhangWefoundthattheadditionofasurfactanttothedropphaseandBasaran29experimentallyinvestigatedtheinfluencesofhasconsiderableeffectsondropshapeandrupture.Inthisvariousfactors,includingtheflowrate,needlediameter,andpaper,weexperimentallyinvestigatetheimpactofsurfactantphysicalpropertiesofadropphasefluid.Theirresultsrevealed(SDS)additionontheformationprocessofaqueousthatthedropdetachmentlengthdecreasesandthenriseswithamphiphilicpolymer(CMC)solutions’dropinambientair.thecapillarynumber.TheyalsoconsideredthevariationsofOurmainobjectiveistorevealtheroleofpolymer−surfactantsatellitedrops’sizeandshowedthatwiththeincrementofflowinteractioninthevariationsofimportantgeometricalandrate,thesatellitedropsbecomelarger.DavidsonandWhite30physicalparametersofdropformation,includingdroplength,numericallystudiedtheinfluenceoftheshear-thinningminimumneckthickness,andformationtimeaswellaspropertyonthedropformationprocess.Theobtainedresultssatellitedrops’size.illustratedthatshear-thinningdecreasesthedropdetachmentlengthandincreasestheneck-thinningrate;however,itseffects■EXPERIMENTALSECTIONarelesssignificantatlowReynoldsnumbers.Morerecently,Carboxymethylcellulose(CMC),usedasananionicpolymer,was31Salehietal.conductedanexperimentalstudytouncoverthepurchasedfromCDH,India.Thedegreeofsubstitution(α)andtheeffectsoftheshear-thinningpropertyofaqueouspolymermolarmassofCMCperunitareintheranges0.4−3and184.95−solutionsonaformingdrop.Accordingtotheirfindings,the437.23g/mol,respectively.Also,weobtainedsodiumdodecylsulfateincrementofshear-thinningleadstoadecreaseinthe(SDS),whichisananionicsurfactant,fromEMDMillipore,Germanyformationtime.(purity≥99%,molarmass:288.37g/mol).ThechemicalstructuresofSDSandCMCarepresentedinFigure1.ThepresenceofsurfactantsintheprocessespertinenttoDropphasefluidsinourexperimentsweresolutionsof0.5,0.75,dropformationand,ingeneral,free-surfaceflowshaveand1%carboxymethylcellulose(CMC)byweightindistilledwater.attractedmuchattentionduetotheirsignificantinfluenceonWeaimtoobservethedropbehavioraroundthecriticalmicelletheevolutionoftheliquidinterface.Accordingtopreviousconcentration(cmc)ofthesurfactantandcompareittothatofthe32−34works,adsorptionofthesurfactantattheinterfaceresultssurfactant-freecondition.Therefore,theformationprocessofpolymer1026https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
2Langmuirpubs.acs.org/LangmuirArticleliquidwassuppliedattheflowrateof150mL/husingasyringepump(SP102HSM,FanavaranNano-MeghyasCo.)toa14Gneedle,whoseinnerandouterdiameterswere1.8and2mm,respectively.Tominimizetheeffectsofambientairflowsontheprocess,theneedlewassetupinsideandontopofacubicPlexiglasshieldperpendiculartotheground.Theimagesofdropevolutionwerecapturedbyahigh-speeddigitalcamera(X-PRI,AOSTechnologiesAGCo.),andthegeometricalparametersofdropsweremeasuredbyanalyzingtheobtainedimagesinMATLAB.Inaddition,alltestswererepeatedatleastsixtimestoestablishreproducibility,andtheaverageofmeasuredvaluesisreportedinthefollowingsection.Inaddition,weconsideredtherepeatabilityofourfindingsbyobservingtheformationprocessof1%CMCsolution’sdropcontainingSDSattheconcentrationof1cmc,performed12times.Thedurationoftheprocessineachtestwasmeasured,andtheresultsareshowninFigure2.ThevariabilityofdatapointsinrelationtotheFigure1.Chemicalstructureof(a)carboxymethylcellulose([CHO(OH)(OCHCOO−Na+)])and(b)sodiumdodecyl673‑α2αNsulfate(CH3(CH2)11SO4Na).RinCMCmoleculescouldbeCH2COONaorH.Degreeofsubstitution(α)isdefinedastheaveragenumberofCH2COONagroupsperCMCmonomer,andNis9,42,43thedegreeofpolymerization.solutions’dropsintheabsenceofthesurfactantanditspresenceatconcentrationsof0.25,0.5,0.75,1,2,and3cmcisinvestigated.TodeterminethecriticalmicelleconcentrationsofSDSindistilledwateroftheCMC−watersolutions,theirinterfacialtensionatvariousSDSconcentrationsismeasuredbyFirstTenAngstrom200.Accordingtoourresults,thecriticalmicelleconcentration(cmc)ofSDSinwaterisequalto5.4mM.Also,thephysicalpropertiesofaqueousCMCsolutionsaregiveninTable1.TheseresultsshowthatthecmcvalueFigure2.Formationtimeofthe1%CMCsolution’sdropcontainingTable1.PhysicalPropertiesofCMC−WaterSolutionsthesurfactantatthecriticalconcentrationforrepeatedtests.interfacialtensionininterfacialmeanformationtimewasmeasuredusingthecoefficientofvariationthetensionatcriticalmicellesurfactant-criticalmicellegivenineq1,whereN,Ti,andT̅arethenumberoftests,formationdensityconcentrationfreestateconcentrationoftimeobtainedforeachtest,andtheaverageformationtime,fluid(kg/m3)(cmc)(mM)(mN/m)SDS(mN/m)respectively.Thevalueofthisstatisticaltoolisfoundtobe2.63%,CMC0.5%997.9664.328.1whichshowsthatwecouldbeassuredoftherepeatabilityoftheexperiments.CMC0.75%998.67.562.127.7CMC1%999.8106027.61N2∑()TTi−̅N−1i=1Cv=T̅(1)increasesasthecarboxymethylcelluloseconcentrationrises,which44accordswellwiththeliterature.Inamixtureofsurfactantandpolymerinwater,surfactantmoleculesinteractwithhydrophobic■RESULTSANDDISCUSSIONpartsofthepolymermoleculesandadsorbonthem.AftersaturationEffectofSDSontheRheologyofCMCSolutions.Theofpolymermolecules,theindependentmicellesinthesolutionbulkviscosityofthedropphaseaffectsthedropdeformationinthe20form.Therefore,asthenumberofpolymermoleculesinthevicinityofpinch-off.Ithasbeenstatedthatthesolutionsofsolutionrises,moresurfactantparticlesarerequiredtoadsorbonCMCandwaterhaveashear-thinning(pseudoplastic)them,leadingtoenhancementofthecriticalmicelleconcentration.property,whichincreasesonraisingtheCMCconcentra-Furthermore,thedensityofthesolutionsismeasuredwitha10,11tion.Tojustifythebehaviorofpolymersolutions’dropsinhydrometer.Accordingtotheobtainedresults,surfactantconcen-trationhasanegligibleeffectonthisparameter.Besides,asshowninthepresenceofasurfactant,theviscosityofCMCsolutionsTable1,thedifferencebetweenthedensitiesofCMCsolutionsiscontainingdifferentsurfactantconcentrationsinawiderangeinsignificant,whichsuggeststhattheinfluenceofdensityintheofshearrates(0.1≤γ̇≤10001/s)ismeasuredusingtheformationprocesscouldbeignoredwithagoodapproximation.rheometerPhysicaMCR301.Figure3illustratestheresultsSurfactant-freeaqueousCMCsolutionswereprepared48hbeforeregardingtheSDSconcentrationsof0,0.5,1,and3cmcforthetestsandwerehomogenizedonarollermixerfor12h.Afterward,aqueousCMCsolutions,accordingtowhichtheviscosityofSDSwasadded(ifneeded),andthesolutionswerehomogenizedsolutionsdecreasesastheappliedshearraterises.Also,itcansimilartowhatmentioned.Also,tominimizetheprobabilityofthebeseenthatatlowshearrates,theviscositydifferencebetweenbubbleexistenceinthesolutions,theywereputinthemotionlessstateforatleast24h.thesolutionswithdifferentamountsofsurfactantisgreaterTheexperimentalapparatusandprocedurearesimilartothosethanthatathighershearrates.ForallCMCsolutions,thedescribedindetailinourpreviouspaper.41Alldropformationtestssurfactantadditiontoasolutioncausedtheviscositytowereperformedinambientairatthetemperatureof25±0.5°C.Theincreaseconsiderably.However,astheshearraterises,the1027https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
3Langmuirpubs.acs.org/LangmuirArticleFigure3.Variationwithshearrateoftheviscosityof(a)0.5%,(b)0.75%,and(c)1%aqueousCMCsolutionsatSDSconcentrationsof0,0.5,1,and3cmc.Figure4.(a)Zero-shearviscosity(μ0)ofthesolutionsof0.5,0.75,and1%CMCandwateratSDSconcentrationsbetween0and3cmc.(b)Variationoftheflowbehaviorindex(n)asafunctionofSDSconcentrationforCMCandwatersolutions(black,blue,andredsymbolsarerelatedtothesolutionsof0.5,0.75,and1%CMCandwater,respectively).(c)Schematicrepresentationoftheinteractionofsurfactantandpolymermolecules,astheSDSconcentrationincreases.SDSparticlesinteractwithhydrophobicportionsofpolymermoleculesandcausetheexpansionofmolecularstructuresandincreasetheliquidviscosity.AthigherSDSconcentrations,polymermoleculesseparatefromeachotherduetotheexistenceofonemicelleforeachhydrophobe,andtheviscositydecreases.viscosityvalueofsurfactant-ladensolutionsbecomesquiteμ0μ()γ̇=21/2−nclosetothatofsurfactant-freesolutions.(1+())kγ̇(2)ThedataobtainedforviscosityintermsoftheshearrateisThevariationsofμ0andnwithsurfactantconcentrationfor45fittedtothethree-parametermodelofCarreau,asgivenineqCMCsolutionsareshowninFigure4a,b,respectively.Ascan2,whereμistheviscosity,μ0isthezero-shearviscosity,kisthebeseen,onincreasingtheSDSconcentration,thezero-shearviscosityofsolutionsincreasesbelow1cmcandshowsaconsistencyindex,γ̇istheshearrate,andnistheflowbehaviordecreaseatconcentrationsbeyond1cmc.Also,theflowindex.behaviorindexforCMCandwatersolutionsdecreaseswith1028https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
4Langmuirpubs.acs.org/LangmuirArticleFigure5.Nondimensionalized(a)droplengthand(b)minimumneckthicknessofthe0.75%CMCsolution’sdropatsurfactant(SDS)concentrationsof0,0.5,1,2,and3cmcasafunctionofthetimeremainingtobreakup.Theimagesaboveandbelowthedatapointsinfigure(a)refertosurfactantconcentrationsof0and2cmc,respectively.Onthecontrary,infigure(b),theimagesbelowthepointsarerelatedtothesurfactantconcentrationof2cmc,andtheimagesabovethepointsrefertothesurfactant-freestate.theriseofsurfactantconcentrationupto1cmc(exceptforthesurfactantaggregatesonsolutions’viscosity.Theseionssolutionof0.5CMC,inwhichcaseitssurfactantconcentrationcouldscreentheelectrostaticforcesbetweenSDSandCMCrisesfrom0.5to0.75cmc)andreachesaminimumatthismolecules,whichcausetheexpansionofmolecularstructuresconcentration.Theobservedtrendforμandncanbeand,consequently,reducetheviscosity.53,54Besides,Na+ions0explainedbyelectrostaticandhydrophobicinteractioncouldalsoadsorbontothemixedsurfactantmicelles’interfacebetweensurfactantandpolymermolecules,asshowninFigureandreducetherepulsiveforcesbetweensurfactants’negatively4c,whichschematicallyillustratesthepolymer−surfactantchargedheadgroups.Thisphenomenonstabilizessurfactantinteractioncausedbymolecules’hydrophobicbehavior.Asmicellesandmolecularstructuresandraisestheliquid44,55mentionedpreviously,CMCmoleculeshavehydrophobicviscosity.AccordingtoFigure4a,thementionedfactorispartsthatinteractwiththoseofnearbymoleculesandformdeterminativeatconcentrationslowerthan1cmcandclosetomolecularstructures.Also,asthesemoleculesaredissolvedinthisvalue.Asthesurfactantamountexceeds1cmc,freewater,Na+ionsseparatefromCMCmoleculesanddisperseinsurfactantmicellesareformedinthesolutionbulk.Sincethesefluidbulk.Consequently,therewillberepulsiveforcesbetweenmicelles’electrostaticchargeisnegative,repulsiveforcesnegativelychargedpolymermoleculesthatopposetheirbetweenthemcontributetothecontractionofthemolecularinteraction.Nonetheless,hydrophobiceffectsareabletostructureandcoulddecreasetheviscosityatconcentrations56−58overcometheelectrostaticrepulsionandcontributetotheabove1cmc.creationofmolecularnetworks.SDSparticles,similartoCMC,Inaddition,itcanbeseenfromFigure4bthat,withthearenegativelychargedandreleaseNa+ionsupongettingincrementofthesurfactantconcentration,theshear-thinningdissolvedinwater.Ontheotherhand,surfactantstendtobehaviorofaparticularCMCsolutionincreasesandshowsaminimizetheircontactwithwatermoleculesduetotheeffectsdecreaseastheconcentrationexceeds1cmc.Theshear-oftheirhydrophobicheadgroups.Therefore,itcouldbestatedthinningbehaviorofthesolutionscouldbeascribedtothe21thatbyaddingsurfactantstothesolution,theyareattractedbydisintegrationofmolecularnetworksundershearstress.Itishydrophobicpartsofpolymerchains,whereaselectrostaticconspicuousthattheseparationofmoleculesofthemoreforcesresistpolymer−surfactantinteraction.Asthesurfactantcomplexnetworksresultsinagreaterreductionoftheviscosityconcentrationexceedsthecriticalassociationconcentrationandalowerflowbehaviorindex,whichisevidentinFigure4b.(CAC),hydrophobiceffectsarestrongenoughtooverweighAlso,accordingtoFigure4a,thevariationofμ0for0.5%CMC46repulsiveforces,andSDSparticlesinteractwiththesolutionislessthanthatfor0.75and1%CMCsolutions,hydrophobicpartsofCMCmoleculesandadsorbonthem,indicatingthatthesizeandcomplexityofmixedaggregates47whichresultsintheexpansionofmolecularnetworks.Sincereducesignificantlyasthepolymerconcentrationdecreases.thesenetworksarerodlikestructures,theyinterconnectwithAlso,electrostaticeffectsandthenumberofNa+ionscouldbe48−50nearbymolecularaggregates,whichresultsintheotherreasonsfortheobservedtrend.50−52enhancementofsolutionviscosity.WithafurtherincreaseInfluencesofPolymer−SurfactantInteractionontheinthesurfactantconcentrationbelowcmc,micellestructuresDropFormationProcess.OurobservationsshowtheformontheCMCmolecules’backbone.Accordingly,theconsiderableeffectofsurfactantadditiononthedropsolution’sviscosityrisesandatacertainsurfactantconcen-elongationandthinningprocess.Figure5a,bdemonstrates53tration,whichislowerthancmc,reachesitsmaximumvalue.theevolutionofthenondimensionalizeddroplength(L/d)Athigherconcentrations,thereisonemicelleforeachandtheminimumneckthickness(hmin/d)intimeforthe21hydrophobicgroupofpolymermolecules.Asaresult,thesolutionof0.75%CMCattheSDSconcentrationsof0,0.5,1,polymerintermolecularbondsarelost(Figure4c)andthe2,and3cmc.tandt0denotethetimeelapsedfromtheliquidviscosityreduces.WeshouldalsoconsidertheinfluencesmomentatwhichthedropbeginstoformandthedetachmentofelectrostaticforcesbetweenNa+ionsandpolymer−time,respectively.AscanbeseenfromFigure5a,thedrop1029https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
5Langmuirpubs.acs.org/LangmuirArticlelengthincreasedslightlyfromthebeginningoftheprocess,andtheshearrateappliedtothefluidpassingalongtheneckatacertainpoint,whichisafewmomentsaftertheappearanceincreasesduetotheriseintheflowrate,whichleadstoaoftheneck,itrosesharply.Betweenthementionedmomentreductionintheliquidviscosity.Basedonthedataillustratedandtheseparationinstant,thedroplengthincreasesoninFigure4b,withanincreaseinthesurfactantconcentrationincreasingthesurfactantconcentrationupto2cmcandshowsbelow1cmc,theshear-thinningpropertyrises,which30,31adecreasewiththeincrementoftheconcentrationfrom2to3expeditestheneckruptureandreducesthedroplength.cmc.Theoppositeofthistrendisobservedfortheneck-Byfurtherincrementofthesurfactantamount,thethinningrate.Figure5bshowsthatataspecificmomentpseudoplasticityofthesolutionsdecreasesandcausestheremainingtobreakup,theneckthicknessdecreaseswiththedroptohavemoretimetoelongate.AccordingtotheenhancementoftheSDSconcentrationto2cmcandthenaforementionedexplanationsandFigure5a,b,thezero-shearincreases.Thisphenomenoncanbejustifiedbyconsideringviscosityandthereductionofinterfacialtensionplayakeyroletheinfluencesofdifferentforcesondropdeformation.Duringindeterminingthethinningkineticsanddroplengthwhenthetheneckingprocess,acurvatureisdevelopedattheneck’ssurfactantconcentrationisbetween0and1cmc.Byincreasinginterfaceprofile,whichcausesthecapillarypressuretobetheconcentrationfrom1to2cmc,despitethereductionofcreated,whichhasadirectrelationshipwiththeinterfacialzero-shearviscosity,otherfactorssuchasthedecreaseintension,accordingtothefollowingequationpseudoplasticityandinterfacialtensionhavedominanteffectsσondropdeformation.However,theincrementofthesurfactantp=amountfrom2to3cmccausestheinfluenceofzero-shearcrc(3)viscositytoovercomeotherfactors.Inaddition,Marangoniwherepcisthecapillarypressure,σistheinterfacialtension,stressescouldalsobeconsideredasaneffectivefactorindropandrcisthecurvatureradius.Thecapillarypressuremakesthedeformationnearthepinch-off,asmentionedabove.liquidtobeevacuatedfromtheneckregion,thereforereducingVariationwithSDSconcentrationofthedetachmentlengththecurvatureradius.ItisevidentthatthepresenceofSDSofCMCsolutions’drop(Ld)isshowninFigure6.Ldismoleculesreducestheinterfacialtension,whichcausesthe29capillarypressuretodecrease.Moreover,becauseofthesuddenincrementoftheneck’sinterfaceareaandconvectiveflowsinthedropbulk,thesurfactantdensityattheinterfaceis59lowercomparedtotheequilibriumstate.Therefore,providedthattheadsorptionofSDSparticlesontotheinterfaceisslowcomparedtothedropformationprocess,theinterfacialtension36,60ishigherthantheequilibriumvalueandincreasesasthe32,34pinch-offapproaches.Hence,theinterfacialtensionalongtheneckmightdecreasebyincreasingtheSDSconcentration,evenabovethecmcvalue,whichresultsintheslowerneckingprocessandenhancementofthedroplength.Basedonpreviousinvestigations,insomecases,thesurfactantandpolymermolecule’sdepletionfromtheneck/37threadinterfacegeneratesaforceimbalance,whichcouldslowdowntheneckingprocess.Asmentionedintheaboveparagraph,theincrementoftheinterfaceareaandfluidflowFigure6.Nondimensionalizeddropdetachmentlengthoftheneartheinterfacecausethedepletionofsurfactantandaqueoussolutionsof0.5,0.75,and1%CMCatsurfactant(SDS)polymermolecules.Duetothefactthatthevariationsintimeconcentrationsbetween0and3cmc.oftheinterfaceareaalongtheneckarenotuniform,andthevelocityoffluidflowindifferentlocationsisnotconstant,adensitygradientofsurfactantandpolymermoleculesiscreatedmeasuredwithinamaximumof1msremainingtopinch-off.attheinterface,whichresultsintheinterfacialtensiongradientAsstatedforFigure5a,b,inaslowerthinningprocess,thedropandMarangoniflows.Thisphenomenoncouldalsocausetheismorelikelytoelongate,andtherefore,itsdetachmentlengthdroplengthandpinch-offtimetoincrease.However,itshouldincreases.AccordingtoFigure6,thesametrendisobservedforbementionedthattheeffectsofsurfactantandpolymerthevariationofLdintermsofSDSconcentrationfortheconcentrationonthestrengthofMarangonistressesarenotsolutionsof0.75and1%.Giventhatthezero-shearviscositypreciselyknownhere,andmorestudiesarerequiredtoreachaandshear-thinningbehaviorofthesolutionsof0.75and1%conclusiveresult.CMCvarywithSDSadditioninthesameway(Figure4a,b),Ontheotherhand,theliquidviscosityopposestheneckthedescriptionsprovidedforFigure5a,barealsoapplicableto22,25,27rupturebydampeningthecapillarypressure.Accordingthe1%CMCsolution’sdrop.However,forthesolutionoftoFigure4a,theincrementofthesurfactantconcentrationup0.5%CMC,raisingtheSDSamountintherangebetween0toacriticalvalueresultsinahigherzero-shearviscosityandand3cmcresultsintheincrementofdroplimitinglength.Thereducesthethinningrate.However,atconcentrationsabove1datashowninFigure4aindicatesthatthevariationofzero-cmc,theadditionofasurfactantcausesthezero-shearviscosityshearviscosityofthe0.5%CMCismuchlessthanthatofthetodecrease,whichleadstoareductioninthethinningrateand0.75and1%CMCsolutions.Hence,itcouldbestatedthatdropelongation.Theotherfactorthataffectsdropdeformationreducingthezero-shearviscosityduetotheincrementofistheshear-thinningbehaviorofthepolymer−surfactantsurfactantconcentrationfrom2to3cmcdoesnotovercomesolutions.Inthethinningstage,thecross-sectionalareaofthetheimpactofothereffectivefactorsincludingtheinterfacialneckdecreasesasthedetachmentmomentnears.Asaresult,tensionandpseudoplasticity,andconsequently,thedetach-1030https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
6Langmuirpubs.acs.org/LangmuirArticlementlengthshowsanincreasingtrendintheconcentrationrangebetween0and3cmc.Inaddition,itisevidentfromFigure6thatthedetachmentlengthofthe0.5%CMCsolution’sdropincreasesslightlywithSDSconcentration.Incontrast,variationsinthelengthof0.75and1%CMCsolutions’dropareconsiderable,whichcouldalsobeascribedtothechangeinzero-shearviscosityofthesolutionsonaddingthesurfactant,asexplainedbefore.Apartfromtheinfluencesofsurfactants,CMCconcentrationisafactorthataffectsthedropshapeafterthegenerationoftheneck.Figure6exhibitsthatataconstantsurfactantconcentration,limitingdroplengthshowsanincreasewithCMCconcentration.ThisaccordswellwithintuitionbecausethenumberofCMCmoleculesinthesolutionnotonlyleadstolargermolecularnetworksbutalsoincreasestheirnumber,whichincreasestheviscosityandalsotheshear-thinningproperty(Figure4a,b).Astheviscousforcesareenlarged,Figure8.Dropformationtimeasafunctionofsurfactant(SDS)capillarypressureisdampedoutfurther,whichalsoleadstoconcentration.slowerneck-thinning.InFigure7,theevolutionintimeoftheDuringthedropevolution,severalexternalforcesareappliedtothedropconnectedtotheneedle,andtheybalanceuntilthe61endofthefirststage.Asthesecondstagebegins,theforcebalanceislost,andthedropneckforms.Ingeneral,themainexternalforcesappliedtoaformingdropareinterfacialtensionanddrag,whichopposethedropbreakup,andthegravityaswellaskineticforcesthattendtoseparatethedropfromtheneedle.Tobettercomprehendandcomparethemagnitudeofthementionedforces,theirvalues(intermsofN)arecalculatedapproximatelyasasampleforthedropof0.75%CMCwithoutasurfactantat400msremainingtobreakup61(Figure9)usingeqs4−7,whereρdisthedensityofthedropFigure7.VariationsintimeofthedimensionlessminimumneckthicknessofaqueousCMCsolutions’dropatthesurfactant(SDS)concentrationof1cmc.dimensionlessminimumneckthicknessofCMCsolutions’dropisshownforjusttheSDSconcentrationof1cmc.Apparently,itcouldbeobservedthatatacertainmomentremainingtobreakup,theminimumneckthicknessdecreasesastheCMCconcentrationrises.Therefore,withintheconstanttimeduration,thedropneckthicknessnarrowslesser,indicatingthattheprobabilityofdropelongationincreaseswiththeincrementoftheCMCconcentration.Moreover,itcouldbededucedfromFigures5−7thatastheneck-thinningprocessbecomesslower,thedropdetachmentlengthincreases.TheformationtimeoftheaqueousCMCsolutions’dropasFigure9.Shapeof0.75%CMCsolution’sdropintheabsenceofaafunctionofSDSconcentrationispresentedinFigure8.Thesurfactantat400msremainingtobreakup.Thedirectionoftheforcesincrementofthesurfactantamountresultsinadecreaseintheispresentedinthepicture.formationtimeoftheCMCsolutions’drop.Moreover,theobtainedresultsshowthatthedurationoftheprocesshasnodependenceontheCMCconcentration.Forexplainingthisphase,gisgravitationalacceleration,Visthedropvolume,62behavior,wecanconsidertheformationprocessintwowhichiscalculatedbytheimageprocessingmethod,uisthe41stages,whichleadstoabetterunderstandingoftheeffectsofvelocityoffluidexitingtheneedle,Qistheflowrateofthedifferentforcesondropevolution.Thefirststageisfromthedropphase,σistheinterfacialtension,θistheanglebetweenbeginningoftheprocesstotheneckformationinstant,andthethedropsurfaceandtheneedle,ristheradiusoftheformingsecondstagebeginsfromtheendofthefirststageandlastsdrop,udropisthegrowingvelocityofthedrop,whichisuntilthepinch-offmoment.measuredusingthedatapresentedinFigure5a,μcisthe1031https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
7Langmuirpubs.acs.org/LangmuirArticleFigure10.Instantaneousshapeoftheformingdropsof(a)0.5%CMCsolutionwithoutsurfactant,(b)0.5%CMCsolutioncontainingasurfactantattheconcentrationof1cmc,(c)0.75%CMCsolutionwithoutsurfactant,(d)0.75%CMCsolutioncontainingasurfactantattheconcentrationof1cmc,(e)1%CMCsolutionwithoutsurfactant,and(f)1%CMCsolutioncontainingasurfactantattheconcentrationof1cmc.Theremainingtimetodetachmentmomentispresentedatthebottomofeachimage.viscosityofair,andμdisthezero-shearviscosityofthedropForabetterdemonstrationofthisconcept,theevolutionofphase.CMCsolutions’drop,inconditionsinwhichtheyarefreeofsurfactantandsurfactant-ladenatthecriticalconcentration,is−4gravitationalforceFgg=∼ρdV10(4)depictedinFigure10.Basedonourcalculations,thefirststage’sdurationdecreasedbyapproximately40%forthreekineticforceFu=∼ρdQ10−7CMCsolutionswhenthesurfactantisadded.However,theK(5)surfactantincreasedthedurationofthesecondstagebynearly−425%.Basedontheseobservations,itcouldbeclaimedthatinterfacialtensionforceFσ=·∼πσdsin()θ10(6)addingthesurfactanthasoppositeeffectsintwostages.Nonetheless,thetotalformationtimeshowsadecreaseversusijjμμcd+yzz−8thesurfactantconcentration,whichsuggeststhatthedragforceFuD=4rπμcdropjjjzzz∼10surfactant’sinfluencesinthefirststagedeterminethevariationsk0.66μμcd+{(7)ofthedropformationtime.TheresultsshowthatthemagnitudeofinterfacialtensionMoreover,Figure10showsthatatequalsurfactantandgravitationalforcesisabout3or4ordershigherthanconcentration,theincrementoftheCMCconcentrationraisedothers,indicatingthattheeffectsofdragandkineticforcesonthesecondstage’sduration,whilethevariationsofthefirstdropdeformationcanbeneglected.Therefore,withagoodstage’stimeareinsignificant(comparedtothedurationofthatapproximation,thefirststage’sdurationcanbeconsideredtostage).Althoughinthesurfactant-freestate(Figure10a,c,e),beaffectedjustbyinterfacialtensionandgravitationalforces.thetotalformationtimeincreaseswiththeincrementoftheConsequently,itcanbestatedthattheincrementoftheSDSCMCconcentration,whichisinaccordancewiththe31concentrationleadstoalowerinterfacialtension,whichcausesliterature,itdoesnotshowanyparticulartrendinthethetimerequiredtostrikeabalancebetweengravityandthesurfactant-ladenstate(Figures8and10).Thiscouldbemaximuminterfacialtensionforcestodecrease.Inthesecondexplainedbyconsideringthattheinterfacialtensionofthestage,asdiscussedpreviously,internalforcesaredecisivesolutionsisalmostconstantatthesamesurfactantconcen-factorsindropdeformation.ThecapillarypressurereducesthetrationastheCMCpercentageischanged(Table1).Hence,neckthicknessandcausesthedroptodetach,whereasthethedurationofthefirststagevariesslightlywithCMCviscousforcesresistthecapillarypressureandtendtoincreaseconcentration,whichcouldbeattributedtothesmalltheseparationtime.Also,thereductionoftheinterfacialdifferencebetweenthephysicalpropertiesofsolutionsortensionforce,whichdecreasesthecapillarypressure(eq2),experimentaluncertainties.Furthermore,enhancementoftheandthecreationofMarangonistressesattheneckinterfacedurationofthesecondstagewithanincrementoftheCMCleadtoanincreaseinthesecondstageduration.amountisaresultofviscosityincrementduetothelarger1032https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
8Langmuirpubs.acs.org/LangmuirArticlemolecularnetworksandweakereffectsofcapillarypressure.Inmosttestscarriedoutinthiswork,satellitedropsareBecausethefirststageismuchlongerthanthesecondstage,itsformedaftertheformationoftheprimarydrop.Accordingtoroleindeterminingthetotalformationtimehasbeenourobservations,thesatellitedropsizeissignificantlyaffecteddominant.bySDSconcentration.InFigure12,theimagesofsatelliteAccordingtoFigure10b,d,f,thethreadshapeattheinstancessoclosetotherupturechangesconsiderablybyaddingthesurfactanttothedropphasefluid.Itcouldbeseenthatinthesurfactant-freestate(Figure10a,c,e),thethreadconformationatthemomentofpinch-off(t0−t=0)isroughlycylindrical.Ontheotherhand,inthepresenceofasurfactant(Figure10b,d,f),thethreadinterfaceisunevensothatanamountoffluidisshowntobetrappedinaparticularsectionalongthethread.ThiscouldbejustifiedbyconsideringtheinfluencesofMarangonistressesonthedeformationofthedropinterface.AsshowninFigure11,thedropneckstretchesFigure12.Imagesofsatellitedropsintheformationprocessof0.5CMCsolutions’drop(a)withoutSDSandinitspresenceatconcentrationsof(b)0.5,(c)1,and(d)3cmc.dropsrelatedto0.5%CMCsolutioninthesurfactant-freestateandinthepresenceofasurfactantatconcentrationsof0.5,1,and3cmcarepresentedasthesamples.Itcouldbeseenthatintheprocesswithoutasurfactant(Figure12a),asmallsatellitedropisformed.However,thepresenceofasurfactantFigure11.Sketchofthedistributionofsurfactantmoleculesatthe(Figure12b−d)causeditssizetoincreasenoticeably.Figureinterfaceofthedropneckandconsequentchangeinitsshape.The12indicatesthatwiththeincrementofSDSconcentrationupsurfactantdensitygradientresultsinthegenerationofMarangonito1cmc,thesatellitedropsizeincreased.Nonetheless,astheflowstowardtheregionswithhighinterfacialtensionandconcentrationrisesto3cmc(Figure12d),thesatellitedropisaccumulationoffluidinaparticularsectionoftheneck.Polymermoleculesarenotdepicted.smallerthanthatoftheconcentrationsof0.5and1cmc.Astheliquidthreadstretchesovertime,twocurvaturesdeveloponitsinterfaceneartheprimarydropandliquidconependantfromtheneedle.Asaresult,capillarypressureiscreatedintheseneartherupturemoment,whichcausesthesurfactantregions,whichcausesthethreadtorupture.Duetothefactmolecules’concentrationtodecreaseinthemiddleportionthattheradiusofcurvatureatthebottomzoneissmalleroftheneck(thesurfactantdistributionalongtheneckinterfacecomparedtothatneartheneedle,thethreadfirstbreaksupcouldalsobedifferentdependingonvariousexperimentalfromthelowerpart.Afterward,threadpinch-offoccursintheconditions).Therefore,Marangoniflowsaregeneratedfromupperpart,whichresultsinthecreationofsatellitedrop.regionswithlowinterfacialtensiontothosewhereinterfacialTherefore,thelengthoftheliquidthreadatthepinch-offtensionishigh.Thisphenomenoncausesthefluidtobemomentisafactorthataffectsthesizeofthesatellitedrop.Onaccumulatedinasectionoftheneck,asillustratedinFigure11.theotherhand,MarangoniflowscouldalsoenlargethesatelliteAccordingtoFigure10,atCMCconcentrationsof0.5anddrops,dependingontheirdirectionandstrength.Asillustrated0.75%,aconcentratedvolumeoffluidisseenatthemiddleinFigure11,anamountoffluidcollectedinthemiddlepartofpartofthethreadofthesurfactant-ladendrop,whichobviouslytheliquidthreadcouldformasatellitedropafterthepinch-off.showsthatsurfactantdepletionfromthisregionwasmoreHence,itcouldbeclaimedthatMarangoniflowsenhancethesignificantcomparedtotheupperandlowerpartsoftheprobabilityofsatellitedropformationandtheirsize.Basedonthread.However,attheCMCconcentrationof1%,theFigure12,theincrementinsatellitedropsizeduetothethicknessofthethreadfromtheregionneartheneedletoitspresenceofasurfactantcouldbeascribedtothecreationofmiddlepartisnoticeablygreaterthanotherregionsoftheMarangoniflowsonthethreadsurfaceandincrementofthethread,indicatingthatCMCconcentrationhasinfluencedthelimitingthreadlength(Figure10a,b).Inaddition,itseemsthatSDSdensitydistributionalongtheinterfaceand,therefore,thewhentheSDSconcentrationis3cmc,theMarangonistressesdirectionofMarangoniflows.Inaddition,giventhatCMCattheinterfaceofthethreadareweakercomparedtothatmoleculesalsohaveahydrophobicproperty,itcouldbewhentheSDSconcentrationis0.5or1cmc,whichcausestheexpectedthattheyadsorbatthedropinterfacesimilartoSDSsatellitedropvolumetodecrease.molecules,andthedropdeformationcouldcausethegenerationofMarangonistresses.Nonetheless,Figure10■CONCLUSIONSillustratesthatintheabsenceofSDS,thethreadthicknessTherheologyoftheaqueousamphiphilicpolymersolutionsisdiffersslightlyalongit.Consequently,itcouldbededucedthatdramaticallyaffectedbytheformationofmolecularnetworkstheMarangonistressescausedbythedensitygradientofandtheelectrostaticforcesbetweenmoleculesandfreeNa+polymermoleculesarenotstrongenoughtoaffecttheionsinthesolutionbulk,whichcouldchangethebehaviorofa31conformationofthethread.formingdrop.Theadditionofasurfactanttoanaqueous1033https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
9Langmuirpubs.acs.org/LangmuirArticlepolymersolutioncausesthesurfactantmoleculestoadsorbon■AUTHORINFORMATIONthepolymermoleculesduetointeractingwiththeirhydro-CorrespondingAuthorphobicparts,whichexpandsthemolecularstructuresandBaharFiroozabadi−DepartmentofMechanicalEngineering,influencestheinterfacialtension,viscosity,andnon-NewtonianSharifUniversityofTechnology,Tehran009821,Iran;behaviorofthesolution.Inpreviouslyreportedstudies,ithasorcid.org/0000-0002-4774-0896;Phone:+9821beenshownthatthesementionedpropertiesdependon66165521;Email:firoozabadi@sharif.edu;Fax:021-variousfactors,includingthepolymerandsurfactant6600002121,53concentrations.Herein,weexperimentallystudiedtheinfluencesofpolymer−surfactantinteractiononthedropAuthorsformationprocess.ThevariationofdifferentparametersPeymanDastyar−DepartmentofMechanicalEngineering,pertinenttodropformation,suchasdroplength,minimumSharifUniversityofTechnology,Tehran009821,Iran;neckthickness,andtheformationtime,wasinvestigatedinorcid.org/0000-0002-1922-8545termsofthesurfactantandpolymerconcentration.MoloudSadatSalehi−DepartmentofMechanicalWedemonstratedthatthezero-shearviscosityandshear-Engineering,SharifUniversityofTechnology,Tehranthinningpropertyofthepolymersolutionsrisewithan009821,Iranincrementofthesodiumdodecylsulfate(SDS)concentrationHosseinAfshin−DepartmentofMechanicalEngineering,toacriticalvalue(cmc)anddecreaseathigherconcentrations.SharifUniversityofTechnology,Tehran009821,IranAsaresult,surfactantadditioninfluencesthedropCompletecontactinformationisavailableat:deformation,which,basedonourobservations,couldbehttps://pubs.acs.org/10.1021/acs.langmuir.0c02487differentdependingonthepolymerconcentration.TheforgoingresultsclearlyshowedthatatthecarboxymethylNotescellulose(CMC)concentrationof0.5%,theincrementoftheTheauthorsdeclarenocompetingfinancialinterest.SDSconcentrationgaverisetothedropdetachmentlength.However,athigherconcentrationsofCMC,thedetachment■ABBREVIATIONSlengthreachesamaximumattheconcentrationof2cmc,CMC,carboxymethylcellulose;cmc,criticalmicelleconcen-whichisduetothecompetitionbetweentheeffectivefactorsintration;SDS,sodiumdodecylsulfatetheneckingprocess,includingtheinterfacialtension,viscosity,andMarangonistresses.Also,atallSDSconcentrations■consideredinthispaper,thedropdetachmentlengthwasREFERENCES(1)Zhang,X.DynamicsofgrowthandbreakupofviscouspendantfoundtorisewiththeincrementofCMCconcentration,dropsintoair.J.ColloidInterfaceSci.1999,212,107−122.which,inthesituationwithoutasurfactant,accordswellwith(2)Lee,B.S.;Cho,H.J.;Lee,J.G.;Huh,N.;Choi,J.W.;Kang,I.S.31themeasurementsofSalehietal.Inaddition,ourresultsDropformationviabreakupofaliquidbridgeinanACelectricfield.suggestedthatthereisaninverserelationshipbetweentheJ.ColloidInterfaceSci.2006,302,294−307.droplengthandthethinningrateoftheneckbecauseasthe(3)Dinic,J.;Sharma,V.Computationalanalysisofself-similarminimumneckthicknessdecreases,thedrophasmoretimetocapillary-driventhinningandpinch-offdynamicsduringdrippingelongate.usingthevolume-of-fluidmethod.Phys.Fluids2019,31,No.021211.Besides,dropformationwasconsideredasatwo-stage(4)Kovalchuk,N.M.;Nowak,E.;Simmons,M.J.Kineticsofliquidprocess,anditwasshownthattheenhancementofthebridgesandformationofsatellitedroplets:Differencebetweenmicellarandbi-layerformingsolutions.ColloidsSurf.,A2017,521,surfactantconcentrationsignificantlyreducesthefirststage’s193−203.timeandincreasesthedurationofthesecondstage.(5)Liu,H.;Altan,M.C.Scienceandengineeringofdroplets:Nonetheless,forallaqueousCMCsolutions,theincrementfundamentalsandapplications.Appl.Mech.Rev.2002,55,B16−B17.oftheSDSamountreducedthetotalformationtime.Onthe(6)Hoath,S.D.FundamentalsofInkjetPrinting:TheScienceofInkjetotherhand,noparticulartrendwasobservedforformationandDroplets;JohnWiley&Sons,2016.timeonincreasingtheCMCconcentration,whereasit(7)Roche,M.;Aytouna,M.;Bonn,D.;Kellay,H.Effectofsurfacéincreasedthesecondstage’sduration.Theimagesofdroptensionvariationsonthepinch-offbehaviorofsmallfluiddropsintheshapenearthepinch-offmomentalsoshowedthatthethreadpresenceofsurfactants.Phys.Rev.Lett.2009,103,No.264501.thicknessbecomesnonuniformalongitduetothepresenceof(8)Toğrul,H.;Arslan,N.ProductionofcarboxymethylcellulosefromsugarbeetpulpcelluloseandrheologicalbehaviourofSDS.Thisphenomenonwasexplainedbyconsideringthecarboxymethylcellulose.Carbohydr.Polym.2003,54,73−82.effectsofMarangonistressesondropdeformation,whichalso(9)Lopez,C.G.;Colby,R.H.;Cabral,J.T.Electrostaticandsignificantlyincreasesthesizeofthesatellitedrops.TheimageshydrophobicinteractionsinNaCMCaqueoussolutions:Effectofofsatellitedropsassociatedwiththesolutionof0.5%CMCdegreeofsubstitution.Macromolecules2018,51,3165−3175.werepresented,anditwasrevealedthatthesizeofsatellite(10)Yang,X.H.;Zhu,W.L.ViscositypropertiesofsodiumdropincreaseswhentheSDSconcentrationrisesto1cmc.carboxymethylcellulosesolutions.Cellulose2007,14,409−417.However,withthefurtherincrementoftheSDSconcentration(11)Cancela,M.A.;Alvarez,E.;Maceiras,R.Effectsoftemperatureto3cmc,thesatellitedropsizedecreases,whichcouldbeandconcentrationoncarboxymethylcellulosewithsucroserheology.J.attributedtotheweakerMarangonistresses.WebelievethatFoodEng.2005,71,419−424.ourfindingscouldbeusefultocontrolthepropertiesofdrop(12)Ghannam,M.T.;Esmail,M.N.Rheologicalpropertiesofcarboxymethylcellulose.J.Appl.Polym.Sci.1997,64,289−301.formationandalterthedropdeformationnearthepinch-off(13)Hansson,P.;Lindman,B.Surfactant-polymerinteractions.moment,whicharecrucialinplentyofapplicationsregardingCurr.Opin.ColloidInterfaceSci.1996,1,604−613.thedropformation,usingpolymer−surfactantinteraction.This(14)Joabsson,F.;Rosen,O.;Thuresson,K.;Piculell,L.;Lindman,́workalsoopensthewayforfuturestudiesdevotedtorevealingB.Phasebehaviorofa“clouding”nonionicpolymerinwater.Effectstheinfluencesofsurfactantandpolymertypesinawiderangeofhydrophobicmodificationandaddedsurfactantonphaseofconcentrationsonthecharacteristicsoffree-surfaceflows.compositions.J.Phys.Chem.B1998,102,2954−2959.1034https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
10Langmuirpubs.acs.org/LangmuirArticle(15)Taylor,D.J.F.;Thomas,R.K.;Penfold,J.Polymer/surfactant(38)Roche,M.;Kellay,H.Pinch-offinthepresenceofsurface-activéinteractionsattheair/waterinterface.Adv.ColloidInterface2007,132,polymers.Europhys.Lett.2011,95,No.54003.69−110.(39)Dechelette,A.;Campanella,O.;Corvalan,C.;Sojka,P.E.An(16)Kevelam,J.;vanBreemen,J.F.;Blokzijl,W.;Engberts,J.B.experimentalinvestigationonthebreakupofsurfactant-ladennon-Polymer−surfactantinteractionsstudiedbytitrationmicrocalorim-Newtonianjets.Chem.Eng.Sci.2011,66,6367−6374.etry:influenceofpolymerhydrophobicity,electrostaticforces,and(40)Tang,Z.;Fang,K.;Bukhari,M.N.;Song,Y.;Zhang,K.Effectssurfactantaggregationalstate.Langmuir1996,12,4709−4717.ofViscosityandSurfaceTensionofaReactiveDyeInkonDroplet(17)Wang,H.;Sun,Y.;Yang,B.;Li,S.AssociationbetweentheFormation.Langmuir2020,36,9481−9488.physicalstabilityofflurbiprofensuspensionandtheinteractionof(41)Dastyar,P.;Salehi,M.S.;Firoozabadi,B.;Afshin,H.HPMC/SDS.AsianJ.Pharm.Sci.2018,13,63−71.Experimentalinvestigationoftheeffectsofsurfactantonthedynamics(18)Drummond,C.J.;Albers,S.;Furlong,D.N.Polymerofformationprocessofliquiddrops.J.Ind.Eng.Chem.2020,89,surfactantinteractions:(Hydroxypropyl)cellulosewithionicandion-183−193.ionicsurfactants.ColloidSurf.1992,62,75−85.(42)Goodwin,J.ColloidsandInterfaceswithSurfactantsand(19)Pisarćik,M.;Bakoš,D.Rheologicalstudyofpolymer-surfactanťPolymers;JohnWiley&Sons,2009.interactionsincellulosederivativesandgelatinaqueoussolution.Acta(43)IndustrialGums:PolysaccharidesandTheirDerivatives;BeMiller,Polym.1994,45,93−96.J.N.;Whistler,R.L.,Eds.;AcademicPress,2012.(20)Holmberg,C.;Sundelöf,L.O.Temperaturedependenceof(44)Bakshi,M.S.;Kaur,R.;Kaur,I.;Mahajan,R.K.;Sehgal,P.;hydrodynamicpropertiesandsurfactant-polymerinteractioninDoe,H.Unlikesurfactant−polymerinteractionsofsodiumdodecylsolution.TheEHEC/SDS/WaterSystem.Langmuir1996,12,883−sulfateandsodiumdodecylbenzenesulfonatewithwater-soluble889.polymers.ColloidPolym.Sci.2003,281,716−726.(21)Kronberg,B.;Lindman,B.SurfactantsandPolymersinAqueous(45)Carreau,P.J.RheologicalequationsfrommolecularnetworkSolution;JohnWiley&SonsLtd.:Chichester,2003.theories.Trans.Soc.Rheol.1972,16,99−127.(22)Wilkes,E.D.;Phillips,S.D.;Basaran,O.A.Computationaland(46)Schwuger,M.J.;Lange,H.ÜberdieWechselwirkungzwischenexperimentalanalysisofdynamicsofdropformation.Phys.FluidsNatriumcarboxymethylcelluloseundTensiden.Tenside1968,5,257−1999,11,3577−3598.259.(23)Ambravaneswaran,B.;Wilkes,E.D.;Basaran,O.A.Drop(47)Jamieson,E.J.;Fewkes,C.J.;Berry,J.D.;Dagastine,R.R.formationfromacapillarytube:Comparisonofone-dimensionalandForcesbetweenoildropsinpolymer-surfactantsystems:Linkingtwo-dimensionalanalysesandoccurrenceofsatellitedrops.Phys.directforcemeasurementstomicrofluidicobservations.J.ColloidFluids2002,14,2606−2621.InterfaceSci.2019,544,130−143.(24)Zhang,X.Dynamicsofgrowthandbreakupofviscouspendant(48)Khan,N.;Brettmann,B.Intermolecularinteractionsindropsintoair.J.ColloidInterfaceSci.1999,212,107−122.polyelectrolyteandsurfactantcomplexesinsolution.Polymers2019,(25)Zhang,D.F.;Stone,H.A.Dropformationinviscousflowsata11,51.verticalcapillarytube.Phys.Fluids1997,9,2234−2242.(49)Hoffmann,I.;Farago,B.;Schweins,R.;Falus,P.;Sharp,M.;(26)Aytouna,M.;Paredes,J.;Shahidzadeh-Bonn,N.;Moulinet,S.;Gradzielski,M.StructureanddynamicsofpolyelectrolytesinviscousWagner,C.;Amarouchene,Y.;Eggers,J.;Bonn,D.Dropformationinpolyelectrolyte-surfactantcomplexesatthemesoscale.Europhys.Lett.non-Newtonianfluids.Phys.Rev.Lett.2013,110,No.034501.2013,104,No.28001.(27)Shi,X.D.;Brenner,M.P.;Nagel,S.R.Acascadeofstructurein(50)Hoffmann,I.;Farago,B.;Schweins,R.;Falus,P.;Sharp,M.;adropfallingfromafaucet.Science1994,265,219−222.Prevost,S.;Gradzielski,M.Onthemesoscopicoriginsofhigh́(28)Henderson,D.M.;Pritchard,W.G.;Smolka,L.B.Ontheviscositiesinsomepolyelectrolyte-surfactantmixtures.J.Chem.Phys.pinch-offofapendantdropofviscousfluid.Phys.Fluids1997,9,2015,143,No.074902.3188−3200.(51)Kabalnov,A.;Lindman,B.;Olsson,U.;Piculell,L.;Thuresson,(29)Zhang,X.;Basaran,O.A.AnexperimentalstudyofdynamicsofK.;Wennerström,H.Microemulsionsinamphiphilicandpolymer-dropformation.Phys.Fluids1995,7,1184−1203.surfactantsystems.ColloidPolym.Sci.1996,274,297−308.(30)Davidson,M.R.;Cooper-White,J.J.Pendantdropformation(52)Tam,K.C.;Wyn-Jones,E.Insightsonpolymersurfactantofshear-thinningandyieldstressfluids.Appl.Math.Modell.2006,30,complexstructuresduringthebindingofsurfactantstopolymersas1392−1405.measuredbyequilibriumandstructuraltechniques.Chem.Soc.Rev.(31)Salehi,M.S.;Esfidani,M.T.;Afshin,H.;Firoozabadi,B.ExperimentalinvestigationandcomparisonofNewtonianandnon-2006,35,693−709.Newtonianshear-thinningdropformation.Exp.Therm.FluidSci.(53)Sovilj,V.J.;Petrovic,L.B.Influenceofhydroxypropylmethyĺ2018,94,148−158.cellulose−sodiumdodecylsulfateinteractiononthesolutioncon-(32)Ambravaneswaran,B.;Basaran,O.A.Effectsofinsolubleductivityandviscosityandemulsionstability.Carbohydr.Polym.2006,surfactantsonthenonlineardeformationandbreakupofstretching64,41−49.liquidbridges.Phys.Fluids1999,11,997−1015.(54)Liu,J.;Sun,D.;Wei,X.;Wang,S.;Yu,L.;Zheng,L.Interaction(33)Liao,Y.C.;Subramani,H.J.;Franses,E.I.;Basaran,O.A.between1-dodecyl-3-methylimidazoliumbromideandsodiumEffectsofsolublesurfactantsonthedeformationandbreakupofcarboxymethylcelluloseinaqueoussolution:effectofpolymerstretchingliquidbridges.Langmuir2004,20,9926−9930.concentration.J.DispersionSci.Technol.2012,33,5−14.(34)Liao,Y.C.;Franses,E.I.;Basaran,O.A.Deformationand(55)Liu,J.;Zheng,L.;Sun,D.;Wei,X.Salteffectonthecomplexbreakupofastretchingliquidbridgecoveredwithaninsolubleformationbetween1-dodecyl-3-methylimidazoliumbromideandsurfactantmonolayer.Phys.Fluids2006,18,No.022101.sodiumcarboxymethylcelluloseinaqueoussolution.ColloidsSurf.,A(35)Kovalchuk,N.M.;Nowak,E.;Simmons,M.J.Effectofsoluble2010,358,93−100.surfactantsonthekineticsofthinningofliquidbridgesduringdrops(56)Trabelsi,S.;Raspaud,E.;Langevin,D.Aggregateformationinformationandonsizeofsatellitedroplets.Langmuir2016,32,5069−aqueoussolutionsofcarboxymethylcelluloseandcationicsurfactants.5077.Langmuir2007,23,10053−10062.(36)Kovalchuk,N.M.;Jenkinson,H.;Miller,R.;Simmons,M.J.(57)Wu,Q.;Du,M.;Shangguan,Y.G.;Zhou,J.P.;Zheng,Q.Effectofsolublesurfactantsonpinch-offofmoderatelyviscousdropsInvestigationontheinteractionbetweenC16TABandNaCMCinandsatellitesize.J.ColloidInterfaceSci.2018,516,182−191.semidiluteaqueoussolutionbasedonrheologicalmeasurement.(37)Gimenez-Ribes,G.;Sagis,L.M.;Habibi,M.InterfaciaĺColloidsSurf.,A2009,332,13−18.viscoelasticityandagingeffectondropletformationandbreakup.(58)Petrovic,L.B.;Sovilj,V.J.;Katona,J.M.;Milanovic,J.L.FoodHydrocolloids2020,103,No.105616.Influenceofpolymer−surfactantinteractionsono/wemulsion1035https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
11Langmuirpubs.acs.org/LangmuirArticlepropertiesandmicrocapsuleformation.J.ColloidInterfaceSci.2010,342,333−339.(59)Stone,H.A.;Leal,L.G.Theeffectsofsurfactantsondropdeformationandbreakup.J.FluidMech.1990,220,161−186.(60)Xu,J.H.;Dong,P.F.;Zhao,H.;Tostado,C.P.;Luo,G.S.Thedynamiceffectsofsurfactantsondropletformationincoaxialmicrofluidicdevices.Langmuir2012,28,9250−9258.(61)Wang,W.;Ngan,K.H.;Gong,J.;Angeli,P.Observationsonsingledropformationfromacapillarytubeatlowflowrates.ColloidsSurf.,A2009,334,197−202.(62)Aminzadeh,M.;Maleki,A.;Firoozabadi,B.;Afshin,H.OnthemotionofNewtonianandnon-Newtonianliquiddrops.Sci.Iran.2012,19,1265−1278.1036https://dx.doi.org/10.1021/acs.langmuir.0c02487Langmuir2021,37,1025−1036
此文档下载收益归作者所有