High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli

High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli

ID:81816701

大小:2.03 MB

页数:9页

时间:2023-07-21

上传者:U-14522
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第1页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第2页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第3页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第4页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第5页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第6页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第7页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第8页
High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli_第9页
资源描述:

《High Aluminum Ordering in SSZ-59 Residual 1 H − 27 Al Dipolar Coupling E ff ects in 1 H MAS NMR Spectra of Brønsted Acid Sites in Zeoli》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticle127HighAluminumOrderinginSSZ-59:ResidualH−AlDipolar1CouplingEffectsinHMASNMRSpectraofBrønstedAcidSitesinZeolitesPublishedaspartofTheJournalofPhysicalChemistryvirtualspecialissue"AdvancedCharacterizationbySolid-StateNMRandInSituTechnology".ChristianSchroeder,StaceyI.Zones,ChristianMück-Lichtenfeld,MichaelRyanHansen,andHubertKoller*CiteThis:J.Phys.Chem.C2021,125,4869−4877ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theextra-largeporezeoliteSSZ-59waspreparedwithhighlyorderedAlatomsinT6positionswithinthedouble-zigzagchains(dzc)runningalongthe14MRchannels.Narrow1HMASNMRsignalsofbridgingOHgroups,whichareresponsibleforBrønstedacidity,emergefromthisAlsiteordering.Thetheoreticallypredictedresidual1H−27Aldipolareffectthatiscausedbythelarge27AlquadrupolarcouplingassociatedwiththetrigonallydistortedAlcoordinationnearthisOHgroupwasobservedherewithanunprecedentedspectralresolution.Three1HNMRsignalsareseparatelyobservedatB=7.0Tforproximal27Al0spinswithmagneticquantumnumbersofm=±1/2,m=±3/2,orm=±5/2.Ashort1H−27Aldistanceof2.52±0.02Åwasmeasuredbymeansof1H{27Al}rotationalechoadiabaticpassagedouble-resonance(REAPDOR)characteristicforaBrønstedacidsite.Thisdistancepredominatestheinitialslopeofthe1H{27Al}REAPDORevolutioncurve,whereasadditionalmuchweaker1H−27Aldipolarinteractionswerefoundbyasecond,lesssteepslopeatlongerevolutiontimes.ThesecondslopecanbemodeledeitherbyasecondAlatomwithinthedzcchainlocatedatadistanceof6.7ÅtothebridgingOHgroupor,alternatively,bytwoAlatomsinthedzc,withH−Aldistancesof8.09and8.72Å.ThelattermodelwithtwoAlisinexcellentagreementwiththepackingoftheorganicstructure-directingagentinthe14MRporesoftheas-madematerial,whichplacestheheteroatomsinthiscaseboronatomsthatarepostsyntheticallyreplacedbyaluminumaftercalcination/removaloftheorganicsintoahighlyorderedpatterninthedzc.Thedataindicatethatthepackingoftheorganicsinadjacent14MRchannelsisnotindependentandshiftedby1.5unitcellsalongthea-direction.DownloadedviaUNIVFEDDEMINASGERAISonMay14,2021at19:55:52(UTC).1.INTRODUCTION14Nspininsolidproteins,7andGroombridgeetal.foundthe8Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.High-resolutionsolid-stateNMRspectroscopyusingmagic-samephenomenonforsolidaminoacids.Later,Olivieriissuedanglespinning(MAS)hasbecomearoutinetechniqueforthethemathematicalframeworkforthequantitativedescriptionof9characterizationofpowderedsolidssinceitwasrecognizedthis“quadrupolareffect”onspin-1/2NMRspectra.Mean-thatasufficientlyfastrotationatanangleof54.7°withrespectwhile,second-orderquadrupolarMASline-shapedistortionstotheexternalmagneticfield(B0)effectivelyaveragesoutthehavealsobeenreported,ifbothIandSarequadrupolar10,11contributionfrominternalspininteractions,includingthespins.TheNMRsignalsofI=1/2nucleiembraceasmalldipolarinteraction,chemicalshiftanisotropy,andfirst-orderadditionalfrequencyshiftwhenadipolarcouplingtoaquadrupolarinteraction.1−5In1977,Lippmaareportedatthequadrupolarspinwithastrongquadrupolarcouplingexists,9,1218thExperimentalNMRConference(Asilomar,California)6termedresidualdipolarcoupling.ThisshiftleadstoathattheheteronucleardipolarcouplingofanISspinpairwithIsplittingwithdistinctchemicalshiftsforthedifferent=1/2andaquadrupolarspin,S>1/2,withastrongquadrupolarinteractionisnotcompletelyaveragedoutbyReceived:December22,2020MAS.ThisquadrupolareffectonMASNMRspectraofspin-Revised:February5,20211/2nucleiisexpected,whenthestrengthofthequadrupolarPublished:February19,2021couplingofaspatiallyproximalnucleusisinthesameorderastheZeemaninteraction.Opellaetal.foundanasymmetricsignalsplittingof13Cspins,whicharedirectlyconnectedtoa©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c113794869J.Phys.Chem.C2021,125,4869−4877

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle221−23(squared)magneticquantumnumbers,m.Themagnitudeofresonance(REAPDOR)experiment.Duringafractionthiseffectisdescribedas13ofarotorperiod,a27Alpulseattenuatesthe1HMASNMRspin-echosignalforthose1Hspinsinspatialproximityto27Al.ννISQ22227νm,iso=[+−]SS(1)3m(3cosβη−1+sinβαcos2)IfthecorrespondingAlsignalisverybroad,then(simply10νSspeaking)onlyafractionofspinswillbeinresonancepositions(1)withrespecttothis27Alperturbationpulse,whenthecrystalsareinthesuitableorientation.Forotherorientations,the27Alanditdependsonthedipolarcouplingconstant,νIS,thequadrupolarcouplingfrequencyofS,νQ,andtheZeemantransitionswillbetoofar-offresonancetocontribute.Thus,avariationofthe27AlirradiationfrequencypermitsthemappingfrequencyofS,νS.Theotherphysicalquantitiesinthisequationarethepolarangles,αandβ,describingtheofthesespinstatesforanypossibleoffset(andcrystalorientations)fromthe27Alcentraltransition(offsetREAP-orientationbetweentheprincipalcomponentoftheelectricDOR).24Additionally,quantitative1H−27AlinternuclearfieldgradientatthelocationofthequadrupolarspinandtheorientationofthedipolarinteractionbetweenIandS;ηisthedistancesareprovidedbasedontheREAPDORevolutionasymmetryparameterofthequadrupolarcouplingforS.analysiswithanunprecedentedaccuracyforsecondandthird,moreremote27Alspins.Infact,thehigh1HspectralresolutionThecaseofinterestinthisworkistheheteronucleardipolarinteractionbetween1H(I=1/2)and27Al(S=5/2)inandunprecedentedinternucleardistanceaccuraciesareBrønstedacidsites(BAS)ofzeolites.Inthepioneeringyearspossiblebecauseofthehighorderingofthechosenzeoliteof1HMASNMRspectroscopyofzeolites,earlyworkbystructure.ThisincludesthelocationofAlatomsinthezeoliteHungerandcolleaguesshowedthatthisdipolarinteractionisframework,whichineffectreducesthe1Hchemicalshiftthedirectoriginof1HMASNMRspinningsidebands,whichdispersionoverlayingtheresidualdipolareffectunder14,15couldbequantitativelyanalyzedtoyieldH−Aldistances.investigationinthiswork.Forsuch1HMASNMRlines,asplittingofthe1HMASNMRSSZ-59isanextra-largeporezeolitewithone-dimensionalsignalsintothreecomponentsisexpectedform=±1/2,m=14-memberedringchannelsrunningalongthea-directionof±3/2orm=±5/2,asthe27Alquadrupolarcouplingisstrong25,26thetriclinicunitcell.TheparentmaterialisonlyknownasandamountstoνQ=2.76MHzforaquadrupolarcouplingaborosilicate,whichwassynthesizedwiththe1-methyl-1-((1-constantCQof18.4MHz(seebelow).Suchlargequadrupolarphenylcyclopentyl)methyl)piperidiniumcationasastructure-couplingconstantshaveprevented27AlNMRsignaldetectiondirectingagent(SDA).Theboronatomsarelocatedintwoforalongtime,thusintroducinginthepastthenarrativeofanpositions,thatis,theT6sitewithinthedzc(double-zigzag“NMRinvisiblealuminum”totheolderliterature,butFreudechainsof4-memberedrings)runningalongthe14-memberedandco-workerswerethefirsttodetectthebroad27AlNMR25ringchannelsandtheT8siteinasingle4-memberedring.16resonancewithastaticspin-echotechnique.However,theThehighboronorderingincombinationwithitsmoderate1Hspectralresolutionwasinsufficientinthoseearlystudies,loadingprovidesagoodprerequisitetoeludetheperilofwhich,aswepresumetoday,wasduetoadistributionof1Hspectralresolutiondeteriorationby1Hchemicalshiftchemicalshiftsthatpreventedtheobservationoftheexpecteddistributionanddipolarcouplingeffects.Theorganicscanbesignalsplittingpredictedbyeq1.Brunnerlaterrecognizedthatremovedbycalcinationoftheas-madematerial,andthenthe1HMASNMRsignalsofzeoliteBrønstedacidsitesshowaboroncaneasilybereplacedbyAl,thusallowingtheformation2717linebroadeningduetothedipolarcouplingtoAl.ofstrongBrønstedacidsiteswithstructurallywell-definedandExperimentalevidencewasprovidedforzeoliteY,whichissufficientlyisolated1H−27Alspinsystems.Thesefavorableoneofthemostimportantzeolitesforindustrialcatalyticpropertieshaveinspiredustopresentthismodelstudyoftheprocesses.Althoughthephenomenonofaresidualdipolarresidualdipolareffectof27Alon1HMASNMRspectraofcouplingwasdiscussed,theresolutionwasnotsufficienttoBrønstedacidsitesandtoanalyzetheAlorderinginthisidentifyaclearsplittingintothreecomponents,astheoreticallyzeolite.predicted.Wehaverecentlyreportedthatthewidthsofthe1HMASNMRlinesofBrønstedacidsitesinzeoliteYare2.EXPERIMENTALSECTIONadditionallyaffectedbyavarietyofslightlydifferentchemicalshiftsforisolatedandpairedacidsites,18thusoverlayingtheSamplePreparation.BorosilicateB-SSZ-59wassynthe-26expectedsplitting.Thisindicatesthatthedistributionofsizedfollowingliteratureprocedures.Thesamplewasisotropic1Hchemicalshiftshashamperedtheexperimentalcalcinatedinairwithfollowingtemperatureprogram:roomobservationofthisquadrupolar-inducedsplittingof1Hsignals.temperatureto393Kwith1K/min,holdfor2h,393to823KWehavepreviouslyshownasomewhatbetterresolutionforawith1K/min,andholdfor12h.Thecalcinedborosilicatewastailor-madezeoliteBetawithisolatedacidsites,19wheretheconvertedintotheAlformbyaB/Alexchangereaction:0.2gquadrupolareffectofm=±5/2spinstatesonthe1HMASofzeolitewasmixedin15mLofanaqueous1MAl(NO)33NMRsignalbecamevisibleasashoulderatB0=9.4T,solutioninaTeflon-linedsteelautoclave,whichwasheatedatwhereastheothertwolinesform=±1/2andm=±3/2363Kfor5days.Thesamplewaswashedfourtimeswith1020mLofHCl(pH2)solutionandfourtimeswith10mLofremainedunresolved.Inthiswork,wereportthefirstexperimentalexamplewhereallthree1Hlinesarefoundforadistilledwaterandafterwarddriedat323K.0.2gofAl-SSZ-59wasthenion-exchangedwithNH+in12mLofa1MNH−singleprotoncomponent,representingtheBrønstedacidsites44inzeoliteH-SSZ-59.1HMASNMRspectraatamagneticfluxacetatesolutionundershakingatroomtemperaturefor5days.density,B0,of9.4and7.0Twillbepresented,whichclearlyAfterdryingat323K,thesamplewasplacedinsideashowthe1Hlinesplittingtoincreaseatthelowerfield,asborosilicateglasstubeandheatedundervacuum(<10−2mbar)expectedfromeq1.Thethree27Alspin-statesituations(m=withthefollowingtemperatureprogram:roomtemperatureto±1/2,m=±3/2,orm=±5/2)areidentifiedbyemploying383Kwith2K/min,holdfor2h,heatingto723Kwith2K/the1H{27Al}rotationalechoadiabaticpassagedouble-min,andholdfor12h.Theglasstubewasflame-sealedfor4870https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlestoringthesampleundervacuumuntiluseforNMRcalculationsemployedthePerdew−Burke−Ernzerhof(PBE)33measurements.functionalwithadouble-ζortriple-ζbasisset(def2-SVPor34Solid-StateNMR.Packingof4mmZrO2rotors(Kel-Fdef2-TZVP)andanempiricaldispersioncorrection35,36end-cap)withthedehydratedH-SSZ-59wasperformedina(D3).Aclusterof51tetrahedralcenters,TO4,was27driednitrogenatmosphere.AllMASNMRexperimentswereextractedfromthecrystalstructureofSSZ-59withthecentralconductedwithaMASrateof12.5kHzand4mmBrukerHXTatombeingdefinedasanAlsiteandSifortheothersites.double-resonanceprobes.WatercontaminationcanberuledPeripheral,unsaturatedoxygenatomswerereplacedbyoutinthedehydratedsample(seeref28forfurtherdetails).hydrogenatomsandoptimizedinafirstgeometryoptimizationExperimentsat7.0TwereperformedwithaBrukerAvanceIIIstepseparately,whilekeepingcoordinatesoftheotheratomsspectrometer,whilefor9.4TaBrukerAvanceIwasused.frozen.Inasecondgeometryoptimization,peripheral1HMASNMRand1H{27Al}REAPDORNMRexperimentshydrogenatomswerefrozen,andtherestoftheclusterwasoptimized.27AlchemicalshiftswereobtainedafterenergeticwereperformedonthedehydratedH-SSZ-59atmagneticfluxdensitiesof7.0and9.4T.11BMAS,29SiMAS,27AlMAS,andoptimizationoftheclustervolume.Tothisend,theatomic27AlMQMASNMRwereacquiredat9.4Tforas-madeB-coordinatesweremodifiedwithvariousscalingfactors,andtheSSZ-59andforhydratedsamplesofcalcinedB-SSZ-59andAl-clusterwasthenagainoptimizedingeometry,asdescribedSSZ-59,respectively.1HMASNMRwasreferencedwithabove,byemployingthePBE-D3/def2-TZVPmethod.Thisadamantane(δ(1H)=1.78ppm)witharadio-frequency(rf)procedureledtoascalingfactorof1.005,givingthelowest27clusterenergy.27Alchemicalshiftswerethencalculatedbyfieldstrengthof62.5kHz(π/2pulseof4μs),andAlMAS37NMRwasreferencedagainstaqueous1MAl(NO3)3solutionsingle-pointcalculationswiththePW6B95hybridfunctional(δ(27Al)=0ppm)withanrffieldstrengthof50kHz(pulseincombinationwiththedef2-TZVPbasisset.Thechemicallengthof0.56μs,π/18pulseoftheliquidstandard).11BMASshiftreferencewasaclustermodelofthechabazitestructure11witha27Alchemicalshiftof60.0ppm.38NMRwasreferencedwithBF3OEt3(δ(B)=0ppm),andanexcitationpulseof0.5μswasapplied(π/16pulseoftheliquidstandard,rffieldstrength62.5kHz).29SiMASNMRwas3.RESULTSANDDISCUSSIONreferencedagainsttetrakis(trimethylsily)lsilane(TTMSS,δ-Thestructuralintegritiesoftheas-madeborosilicateSSZ-59,(29Si)=−9.8ppm)withaπ/2pulseof5μs(rffieldstrengththecalcinedsample,andtheAl/B-exchangedAl-SSZ-59areof50kHz).ForREAPDORexperiments,thelengthofthe27AlconfirmedbyX-raypowderdiffractionand29SiMASNMRrfpulsewas1/9oftherotorperiod(8.89μs),whichisshorter(FiguresS1andS2).The1HMASNMRspectraofdehydratedthantherecommendedlengthof1/3ofarotorperiod.TheH-SSZ-59atB0=7.0and9.4TareshowninFigure1.ThechoiceofashorterREAPDORpulseisduetoahighersignalsofinteresthere,whichrepresentunperturbedBrønstedresolutionin27Alfrequency-offset-dependentmeasurements,acidsites(BAS),arefoundinthechemicalshiftrangebetween20aswehaveelaboratedindetailinourpreviouswork.The3.5and4.5ppm.BroadercomponentsathigherchemicalshiftseighthREAPDORpoint(nTr=16,1.28msevolutiontime)(4.8ppm,6−10ppm,FigureS3),possiblyduetohydrogen-wasusedforoffset-dependentmeasurements.Thedetermi-bondedBAS,aresubjecttoongoinginvestigations.Inaddition,nationofΔS/S0valuesandlinesimulationsisextensivelySiOH(1.5−2.5ppm)andAlOH(2.7ppm)components39documentedinref20withtheonlydifferenceherethatS0is(FigureS3)arewell-establishedandwillnotbefurtherthesumofallcomponentsofdifferentspinstates,m.Evolutiondiscussedhere.curveswerealsoobtainedwithoff-resonance27AlirradiationatThecomponentsforunperturbedBAShavemarkedly−1and−2MHzat7.0T.Forz-filtered27AlMQMASNMR,differentchemicalshiftsdependingonthemagneticfluxpulsesof4.0and1.5μswereusedforexcitationanddensity(Figure1andTable1).Asinvestigatedinmoredetailsreconversionoftriplequantum(3Q)coherences,andaread-below,weassignthesepeaks,whicharehighlightedbycolorsoutpulseof10μswasemployed.Thestatic27AlWCPMGinFigure1,totheBASwithdistinct27Alspinstates,thatis,mspectrumofdehydratedH-SSZ-59wasacquiredat7.0Twith=±1/2,m=±3/2,orm=±5/2.Thestates±1/2and±3/2WURST-80pulses(500kHzbandwidth,100μsduration),andarenotresolvedat9.4T,butthereisaclearshoulderat7.0T,40echoeswererecorded.exhibitingtheexpectedresolution.ThishigherspectralSIMPSONwasusedfornumericalsimulationsofspectra,resolutionatlowermagneticfieldstrengthisexpectedREAPDORevolutioncurves,andoffset-dependentREAPDORaccordingtoeq1.29,30Theresidualdipolareffecton1Hchemicalshiftsaccordingprofiles.TheanglebetweentheprincipalcomponentsofthequadrupoleanddipolarcouplingtensorsfortheBASwastoeq1issummarizedinTable1.Forthesecalculations,asetto25°,24andanglesbetweenthe1H−27Aldipolartensorsin1H−27Aldipolarcouplingconstantνof1950HzisassumedISthree-spinsimulationsweresetto90°.Simulationsarescaled(seebelow),andthequadrupolarinteractionfrequency,νQ,isbyanempiricalfactorof0.93totakeintoaccountrf2.76MHz,whichfollowsfromaquadrupolarcouplingsusceptibilitydifferencesbetweenliquidreference(rffieldconstant,C,of18.4MHzobtainedfroma27Alline-shapeQstrengthgivenabove)andsolidsamples,asrationalizedandsimulationofthestatic27AlWCPMGspectrumofthedescribedpreviously.19Deconvolutionof1HNMRand29SiunperturbedBAS(FigureS4).The27Alresonancefrequencies,31NMRspectrawasachievedwithdmfit2015.νS,areadjustedtothemagneticfluxdensity,B0,andtheyareX-rayPowderDiffraction.HydratedsamplesB-SSZ-5978.1and104.2MHzforB0=7.0or9.4T,respectively.The24,40as-made,B-SSZ-59calcined,andAl-SSZ-59weremeasuredpolarangle,β,wassetto25°.Thelasttermofeq1withaStoeStadIP(CuKα1wavelengthof1.5406Å)inincludingtheunknownpolarangle,α,canbeneglectedspinning0.3mmglasscapillariesfor30minbyusingthebecausethetrigonometrictermsare<1,asisalsoη=0.15programWinxpow.(FigureS4).Therefore,themagnitudeofηsin2βcos2αisDFTCalculations.Electronicstructurecalculationswereestimatedtobewithin0and0.03,whichissmallcomparedto322performedwiththesoftwareTurbomole7.4.TheDFT3cosβ=2.46.TheresultsthatarelistedinTable1showa4871https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleAl−Aldistances(seebelow)areresponsibleforahighdegreeoforderinginthestructure,whichmakesthisSSZ-59materialwell-suitedforthismodelstudyoftheresidualdipolareffectof27Alon1Hchemicalshiftresolution.TheAl6positionislocatedinthedzcrunningalongthe14MRchannel,andallpossibleT6positionsareshowninFigure2,whichwasobtainedafterDFTgeometryoptimizationwithaprotonlocatedatO14.TheclosestH−AldistanceinFigure2is2.46ÅforAlinaT6site.AdditionalAl6locationsarepossiblefortheotherT6sitesofFigure2,butsomeofthemwillbeoccupiedbyaSiatomratherthanAl.Figure2.ExcerptofaDFTgeometryoptimizedclustermodelofaBrønstedacidsitelocatedatO14inH-SSZ-59.TheDFTcalculationFigure1.1HMASNMRspectraofdehydratedH-SSZ-59at7.0andwasperformedwithanAlatomattheAl(1)position,andalltheother9.4T(12.5kHzMAS)withdeconvolution;fullspectraincludingTsiteswereSiatoms.AllpossibleAloccupanciesatneighboringsignalsofdefectsilanolsitesareshowninFigureS3.TheschemesoncrystallographicT6positionsarehighlightedinvioletcolorandthetopshowthedifferent27Alspinstatesshiftedbyfirst-orderlabeledwithAl(1)−Al(7).TheH−Aldistancesaregivenintheinsets.quadrupolarinteractionsandtheassociateddifferent1HsignalsThefullclustermodelincluding51tetrahedralatoms(179atomsin(arrows)influencedbyaresidual1H−27Aldipolarcoupling.total)isshowninFigureS7.Table1.ResidualDipolarEffectofm(27Al)on1HNMRThesuggestedresidualdipolareffectobservedforChemicalShifts;FrequencyShifts,νm,iso,AreCalculatedbyunperturbedBASinzeoliteSSZ-59isfurtherinvestigatedtoApplyingEq1andCorrespondingδm,isoinppmAreGiven;confirmsuchaninterpretation.Webeginwiththeanalysesof1H{27Al}REAPDORevolutioncurves,whichareshownintheFinalColumnListstheObservedExperimentalChemicalShiftsFigure3.Anexampleofthecorrespondingspectraatanevolutiontimeof1.28msat7.0and9.4TisshowninFigureB/Tm(27Al)ν/Hzδ/ppmδ(1H)/ppm10m,isom,isoexpS8.WhenallthreeHcomponents,assignedtothedistinctm7.0±5/2−134.2−0.453.6statesof27Al(seeFigure1),arecombinedasonedataset(all±3/226.80.094.0SintensitiesintegratedtogetheranddividedbyS0),thenthe±1/2107.40.364.31H{27Al}REAPDORevolutiondata(blackfullcircles)are9.4±5/2−100.6−0.253.8perfectlysimulated(solidline)witha1H−27Al−27Althree-spin±3/220.10.054.1system(Figure3A,B)byusing1950±50and106±10Hz±1/280.50.20dipolarcouplingconstants.Thecorrespondingshorterdistance,2.52±0.02Åforthelargercouplingconstant,isgoodagreementbetweencalculatedfrequencyshiftsandthethewell-knownseparationofthehydrogenatomintheexperimentallyobserved1Hsignalsplittings.bridgingOHgroupandthenearbyAlatom.TheslightlyThecrystalstructureofSSZ-59haseightdistinctcrystallo-shorterfirstH−Aldistanceof2.46ÅintheDFTmodelofgraphicTsites(tetrahedralcenters),andfortheas-madeFigure2comparedtotheexperimental2.52±0.02ÅinFigurematerial,whichisaborosilicate,onlythepositionsT6andT83ispossiblyduetolocal(fast)vibrationalmotionofthe(withconsiderablylowerabundance)werereportedtobebridgingOHgroups,whichreducestheheteronucleardipolar2541occupiedbyboronatoms.Wehavereplacedboronbyinteractiontosomeextent.aluminuminoursampleaftercalcinationofthiszeolite,thusThesecondcouplingconstantof106HziseitherremovingtheorganicSDAbeforeAlinsertion(fordetailsseerepresentativeofasecondAlatom,whichis6.7±0.3ÅFigureS5andtheExperimentalSection),andthe27AlapartfromtheBASunderinvestigation,oracombinationofMQMASNMRinvestigationofhydratedAl-SSZ-59yieldstwoadditionalAlatomswithlongerdistances,aswillbeonlyonesignalatδiso=63.2ppm(FigureS6).Quantum-furtherelaboratedonbelow.Wenotethatthegoodnessofthechemicalcalculationsofthe27AlchemicalshiftsforAl6andfituptoanevolutiontimeof4msisunprecedentedinour19,20,24,27,28,42−46Al8yield62.4and56.7ppm,respectively.Thus,weconcludepreviouslibraryofsuchanalysesforBAS.WethatonlytheT6positionisoccupiedbyAl.Thisexclusivearealsounawareofsuchagoodfitusinga3-spinsystematoccupancyofasinglecrystallographicsiteandlonginteratomicsuchlongevolutiontimesfordistanceanalysesinzeolitesthat4872https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlecombinationsofAloccupanciesaccordingtotheDFTmodelshowninFigure2arenowconsideredtodiscusstheexperimental1H{27Al}REAPDORevolutioncurvesinFigure3and,inparticular,thesmallslopeofthecurveabove1msevolutiontime.SuchsimulationsareshowninFigure3C.IfasecondTsite,inadditiontoAl(1),wasoccupiedbyAlatoneofthepositionsAl(2),Al(3),Al(5),andAl(6)(Figure2),thenthesimulatedREAPDORevolutioncurvesaresignificantlyabovetheexperimentalobservations(Figure3C).Ontheotherhand,anadditionalAlatomatoneofthepositions,Al(4)orAl(7),wouldyieldatoolowREAPDORcurveandcanthereforenotperfectlyexplaintheexperimentaldata.However,acombinationofAl(4)andAl(7)inadditiontoAl(1)yieldsaperfectfittotheexperimentaldata.WewillfurtherdiscussbelowthestructuralsignificanceandarationaleforthisAl(1)−Al(4)−Al(7)occupancymodel.The1H{27Al}REAPDORevolutiondatasetswerealsoanalyzedfortheindividualcomponentsassignedtodistinctm(27Al)states.Thecomponents,whichincludethem=±1/2states,yieldthestrongestREAPDOReffect,asisexpectedfor27Alonresonanceirradiation(Figure3A,B).WenotethatallREAPDORdatasetsofFigure3arescaledwiththesameS0,whichisthesumofall1Hspin-echocomponents(allm(27Al)states).ThisensuresthattheREAPDOReffectsofindividualcomponentsadduptothecombinedREAPDORevolutioncurves,whicharequantitativelysimulatedassolidblacklines.Thecontributionofthem=±5/2statestotheREAPDORevolutioninFigure3iscomparativelysmall,despitethisspinstateisexpectedtocontributewithalargerdipolecouplingthanm=±1/2.Thisisduetothemuchlargerfrequencydistributionofm=±5/2spinstates,thuskeepingmostofthesespinsoutofresonanceforthe27Alpulse.Aslightlylargercontributionofthem=±3/2statescanbediscernedat7.0T.ThesolidcoloredlinesinFigure3A,BareSIMPSONsimulations,inwhichtheindividual27Alspinstateswereindividuallycomputed,whiletheotherspinstateswereswitchedoff.Consideringthatthesespin-state-selectivesimulationsonlytookintoaccountthelargedipolarcoupling127Figure3.H{Al}REAPDORevolutioncurves(filledcircles)ofof1950Hztoone27Alspin,theagreementbetweenspinstate-signalcomponentsforunperturbedBASindehydratedH-SSZ-59atselectivemeasurementsandsimulationsisverygood.7.0T(A)and9.4T(B).(C)SIMPSONsimulationsfor9.4TTofurtherspotlightthespin-statecontributions,theoffsetconsideringtheAl(X)positions(X=1−7)ofFigure2:isolatedAl(1)1H{27Al}REAPDORprofilesareshowninFigure4,wherethe(greenline)orAl(1)withthepresenceofanadditionalAl(X)(solidevolutiontimewaskeptconstantat1.28ms,andthe27Algraylines).Thesolidblacklineisobtained,whenAl(1),Al(4),andAl(7)arejointlyoccupiedbyAl.Thesolidblacklinein(C)wasirradiationfrequencywasvaried.Althoughsuchexperimentssimulatedasathree-spinsystemwith1H−27Aldipolarcouplingaretime-consumingandeachdatapointrequires(re)tuningofconstantsof1950Hz(Al(1))and106Hz(sumofdipolarcouplingtheNMRprobe,wehavedecidedtocollectasmanydataasconstantsforAl(4)andAl(7)),anditisalsousedforthecombinedpossiblebutmeasureonlyonesideoftheprofile,asthe27AlREADPORevolutioncurves(All)in(A,B).SIMPSONsimulationsoffseteffectissymmetricwithrespecttoon-resonancefortheindividualm(27Al)spinstatesin(A,B)onlyconsiderAl(1).irradiation.Them=±1/2spinstatesyieldthestrongestREAPDOReffectfor27Alon-resonanceirradiation,butaareavailablehithertointheliterature.Thismustbeduetotheconsiderableattenuationisobservedforoffsetirradiation.ForhighdegreeofAlorderinginthismaterial,wheretheAlatomstheothermstates,thatis±3/2and±5/2,theeffectisweakforarelocatedatspecificsitesandadoptafairlylargeseparationon-resonanceirradiation,butitremainseffectiveatasimilarfromoneanother.EachAlatomissurroundedbyasufficientlylevelwhengoingtolargeoffsets.Theseobservationsconfirmlarge,siliceousregion,andthisisolationsuppressesmutualthatourinterpretationofthethreecomponentslabeledinperturbationofthesedilutedAlenvironments,whichwouldcolorinFigure1iscorrect,assuchanoffsetREAPDORyield1Hchemicalshiftand/ordistancedistributions.behaviorisexpectedforthesedistinctcomponents,andtheirThelargerheteronucleardipolarcouplingconstantof1950simulationsagreeverywellwithexperimentalobservationsHzispredominantfortheinitialslope(upto1ms)ofthe(Figure4).REAPDORcurvesofFigure3andtheoscillatorybehaviorTheREAPDOReffectsofm=±3/2and±5/2statesthereafter.Thesmallercouplingconstantof106Hzisderivedcontributetoaminorextenttothetotaleffect(Figures3andfromthesmallslopeafter1msevolutiontime,wherethe4),buttheybecomemoresignificantforoffset27Alirradiation.curvesdonotflattentoperfecthorizontalplateaus.VariousThisisperhapsbestillustratedbycomparingthe1H{27Al}4873https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure5.1H{27Al}REAPDORevolutioncurvesofsignalcomponentsforunperturbedBASindehydratedH-SSZ-59with27Alirradiation1271Figure4.H{Al}offsetREAPDORprofilesoftheindividualHoffsetsof−1MHz(A)and−2MHz(B)at7.0T.Notethatthe27AlsignalcomponentsforunperturbedBASindehydratedH-SSZ-59atspin-stateselectivesimulationsin(A)and(B)onlyconsiderthe7.0T(A)and9.4T(B).TheSIMPSONsimulationsareshownasstrongest1H−27Alheteronucleardipolarinteractionof1950Hz.solidlines.Wenotethedifferentsignsatthefrequencyaxis,whichindicatesthatdifferentfrequencyregionsweremeasuredatthetwodifferentmagneticfluxdensities.speciesshouldbetakenwithcare,asthequantitativeoutcome,thatis,themagnitudesofthecalculateddipolemoments,dependsonthechoiceofthecoordinateorigin,butitsrelativeREAPDORevolutioncurvesundersuchoffsetirradiationorientationmaybeuseful,iftheCartesianoriginandtheconditions,whichareshowninFigure5.Thetworesolvedmolecularchargecenterfalltogether.Therefore,wehavecomponentsform=±1/2and±3/2contributeatasimilarfrozenthechargecenter(theNatomoftheSDA)at(0,0,0)extenttothetotalREAPDOReffectforanoffsetof−1MHz.andoptimizedthecationstructurebyDFTgeometryThe±5/2statesremaintocontributewithalowREAPDORoptimization(PBE-D3/def2-TZVP).Thus,onlytheorienta-effect,alsoforalargeroffsetof−2MHz.Therefore,itisshowntionofthedipolemomentisdiscussedhere,butnotitsthatthecontributiontothetotalREAPDOReffectofeachmmagnitude.spinstateisuniquely/dissimilarlydependentonthe27AlAmatterofinterestisnowhowthesemolecularcationsareirradiationoffset,with±1/2beingthemostaffected.Again,packedintothe14MRchannelsandhowthedipolemomentsselectiveSIMPSONsimulationsforthedistinctm(27Al)spinoftheSDAcationsaremutuallyoriented.Tothisend,werefer25statesreproducetheexperimentalobservationsverywelltotheproposedmodelbySmeetsetal.TheSDAcationsare(Figure5).onlypartiallyoccupyingallpossiblepositionsinspacegroupWenowapplythesedistanceanalysesfromtheNMRdataP1̅.Toillustratethis,wenotethatthereisonecrystallographicdiscussedabovetodeepenourunderstandingastowhysuchnitrogenatom,whichreproducesbytheinversionsymmetryofanorderedAldistributionexistsinzeoliteSSZ-59.Figure6thetriclinicspacegroupP1̅asindicatedbypalegreenballsinillustratesthestructuralinformationfromX-raydiffractionFigure7.Becauseofthemolecularsize(andpackingeffects),25analysisthatneedtobeconsideredhere,andFigure6AisaonlysomeofthesepossibleNlocationsareoccupied,assketchoftheSSZ-59zeoliteframeworkstructurewiththe14-proposedherebythepackingmodelinFigure7.Thememberedring(MR)channel.Ontheupperandlowerendofoccupancyfactorofthenitrogenatomonthe2iWyckoffthis14MRchannel,therearetwodouble-zigzagchains(dzc)positionwasreportedtobe0.2704,whichyields∼0.54SDAforwhichtheT6positionsarehighlightedbyvioletballs.Thecationsperunitcell(0.48SDA/u.c.fromchemicalanalysisinAlatomsarelocatedontheseT6positionswithpartialoursample).OurSDAloadingrequiresanSi/Bratioof32.3occupanciesaddingtoSionthisTsiteotherwise.T6−T6forcompletechargeneutralizationbyBO−frameworksites,4/2distancesacrossthe14MRchannelareatleast10.7Å.Thebutwefoundlessboroninoursample(Si/B=55.7).insertionoftheheteroatomsisusuallydominatedbytheTherefore,additionalvacancydefectsareneededforcharge25interactionwiththeorganicSDA.Itspositivechargeandbalance,whichmaybefilledbyaluminum.Smeetsetal.havemoleculardipolemomentplayarolefortheinsertionofshownthatthephenylringsareassembledbyπ−πframeworkcharge(BO−inourcase,whichisthenreplacedinteractions,sothatforeachsuchSDApaironecationis4/2−47−50byAlO4/2).Theorientationofthemoleculardipoleorientedslightlyupandonedowninthe14MRchannel.Thismomentofthe1-methyl-1-((1-phenylcyclopentyl)methyl)-leadstotheclosestC-T6distancesof4.2Å(pinkbrokenlinespiperidiniumcationisillustratedinFigure6B.ItshouldbeinFigure7),whicharethemostlikelylocationsofAlfornotedthatthecalculationofdipolemomentsofchargedchargereasonsandthedirectingeffectofthemoleculardipole4874https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure7.StructuralmodelofAlinsertion(proposedoccupancyindicatedbyvioletballs)intotheT6positionofthedouble-zigzagchains(dzc)ofSSZ-59.besignificantlydifferentwithahigherslopeatincreasingevolutiontimesifadditionalAlatomswerepresentatAl(2),Al(3),Al(5),orAl(6)asshowninFigures2and3C.Weconcludedfromthesmallerdipolarcouplingconstantof106HzinFigure3thatAl(1),Al(4),andAl(7)areoccupiedbyAl(Figure2),withH−Aldistancesof8.09Å(59Hz)and8.72Å(47Hz).TheH−AlseparationsderivedfrombyREAPDORanalysesareingoodagreementwithAl−Aldistancesof7.9and8.6ÅinthemodelshowninFigure7.Thus,weinferthatFigure6.(A)Double-zigzagchains(dzc)ofSSZ-59withT6thisorderingmustbeduetotheinfluenceofthemolecularpositionshighlightedinviolet.(B)1-Methyl-1-((1-phenylcyclo-dipolepackingwithinone14MRchannel,takinginfluenceonpentyl)methyl)piperidiniumcationandorientationofitsdipolethepackingintheneighboringchannel.Thisinterestingpointmoment.Oxygenatomsareomittedin(A).iscertainlysubjectforfurther,moresystematicinvestigationsinfuturestudies.moment.ThepackingoftheSDAwithinone14MRchannel,whichisaddressednext,canthusonlyaccountforAl−Al4.CONCLUSIONdistancesasgreatas15Å.Theunitcelllengthinthea-The27Alspinstatesm=±1/2,m=±3/2,andm=±5/2directionisasshortasabout5Åonly.Thisshortcelllengthinducedistinct1HchemicalshiftsofbridgingOHgroupsinmakesitimpossiblefortheSDAtofitintoasingleunitcell,zeoliteSSZ-59,whichareresolvedatB=7.0T.The1Hsignal0andthehighsymmetryinthecenterofthe14MRringsalsosplittingisduetothelargequadrupolarcouplingconstantofimposesorientationaldisordertotheSDA.Smeetsetal.have18.4MHzforthetrigonallydistortedAlO4/2coordination,locatedtheorganicguestcationviapowderX-raydiffractionleadingtoaresidualdipolareffect.Thistheoreticallypredictedmethodsbyusingsimulatedannealing,fromwhichtheauthorsresidualdipolareffectonaspin-1/2NMRsignalcouldbehadtomodifytheunitcelllengthalongthea-directionbyaobservedwithanunprecedentedresolutionforzeolites,whichsupercell3timesaslong.Thisyieldsthedistanceof15Åismadepossiblebythehighdegreeofstructuralorderingwithdiscussedabove,inagreementwiththepackingmodelshownspecificlocationsofAlatomsatT6sitesindouble-zigzaginFigure7.TheresultingSDAoccupancyisthentwoorganicschainswithasufficientlylongAl−Alseparation.Additionally,itperthree(small5Å)unitcells.couldbeshownthattheREAPDOReffectsforon-resonanceConsequently,shorterAl−Aldistances,asweobservethemandoffset27Alirradiationfortheseindividual1Hsignalhere(seeabove),cannotbebalancedbytheSDAwithinonecomponentsmatchSIMPSONsimulations,whichclearlychannel,andtheymustbeduetothedirectingeffectofthebolstersthisassignment.Thus,thehighresolutionofthe1HSDApackingintheneighboring14MRchannel(Figure7).Asignalsplittingfordifferentm(27Al)spinstatescanbeusedintranslationalshiftof1.5unitcells(5Åa-axis)isproposedthefutureasanindicatorforhighlyorderedacidsitebetweenthetwochannelfillingsinFigure7torationalizethedistributionsindilutedAlzeolites.Asthe1HsignalsplittingobservedAldistribution.ItisinterestingtorecognizethatAldependsonthemagneticfluxdensity,B0,thequadrupolar-insertionwithinonedzcduetotheSDApackingoftwoinducedresidualdipolareffectandthecorrespondingdifferent14MRchannelscouldinprinciplealsoleadtoAl−Alfrequencyshiftscanbeeasilystudiedbyrunning1HMASseparationsshorterthanillustratedinFigure7,thatis,whenNMRspectraatdifferentmagneticfields.Moreover,atwoAlatomsarelocatedinthesameoradjacentfour-ringofcomparisonofthe1H{27Al}REAPDORevolutioncurvesforthedzc.ThiswouldbethecaseifoneSDApackingwouldbedifferent1Hsignalcomponentscanbeusedtorevealtheshiftedalongthechanneldirectionbylessthan1.5unitcellspresenceofsuchresidualdipolareffectsinzeolites.withrespecttoitsadjacentchannel.However,thisisobviouslyItisinferredthatthehighheteroatomorderingiscausedbyisnotthecase,as1H{27Al}REAPDORevolutioncurveswouldtheorderedpackingofthestructuredirectingagentinthe144875https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleMRchannels,whichinturndirectsboronatomsatspecific(2)Lowe,I.J.FreeInductionDecaysofRotatingSolids.Phys.Rev.locations.AfterAl/Bexchange,theobservedAlorderingisLett.1959,2,285−287.obtained,wherethedeterminedH−Aldistancesareingood(3)Andrew,E.R.;Bradbury,A.;Eades,R.G.RemovalofDipolaragreementwiththeAldistributionmodelimposedbystructureBroadeningofNuclearMagneticResonanceSpectraofSolidsbydirectionwiththequaternaryammoniumcation.TheobtainedSpecimenRotation.Nature1959,183,1802−1803.(4)Stejskal,E.O.;Schaefer,J.;Waugh,J.S.Magic-AngleSpinningH−AldistancesclearlysuggestthattheSDApackingina14andPolarizationTransferinProton-EnhancedNmr.J.Magn.Reson.MRchannelofSSZ-59musthaveaninfluenceonthepacking1977,28,105−112.intheneighboringchannel,whereonlyatranslationalshiftof(5)Maricq,M.M.;Waugh,J.S.NMRinRotatingSolids.J.Chem.1.5unitcellsoftheSDAalongthea-directioncanexplainthePhys.1979,70,3300−3316.Aldistributionfoundinthiswork.(6)Lippmaa,E.;Alla,M.;Kundla,E.In18thExperimentalNMRConference,Asilomar(California),1977.■ASSOCIATEDCONTENT(7)Opella,S.J.;Frey,M.H.;Cross,T.A.DetectionofIndividual*sıSupportingInformationCarbonResonancesinSolidProteins.J.Am.Chem.Soc.1979,101,TheSupportingInformationisavailablefreeofchargeat5856−5857.https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11379.(8)Groombridge,C.J.;Harris,R.K.;Packer,K.J.;Say,B.J.;Tanner,S.F.High-ResolutionC-13NMRSpectraofSolidNitrogen-1HMASNMR;static27AlWCPMGspectrum;11BMASContainingCompounds.J.Chem.Soc.,Chem.Commun.1980,174−NMR;29SiMASNMR;27AlMASandMQMASNMR;175.fullmodeloftheDFTgeometry-optimizedstructure;(9)Olivieri,A.C.QuadrupolarEffectsintheCPMASNMRSpectraexampleof1H{27Al}REAPDORNMRspectra;powderofSpin-1/2Nuclei.J.Magn.Reson.1989,81,201−205.X-raydiffraction(PDF)(10)Perras,F.A.;Bryce,D.L.Residualdipolarcouplingbetweenquadrupolarnucleiundermagic-anglespinninganddouble-rotation■conditions.J.Magn.Reson.2011,213,82−89.AUTHORINFORMATION(11)Wi,S.;Frydman,V.;Frydman,L.ResidualdipolarcouplingsCorrespondingAuthorbetweenquadrupolarnucleiinsolidstatenuclearmagneticresonanceHubertKoller−InstituteofPhysicalChemistryandCenterforatarbitraryfields.J.Chem.Phys.2001,114,8511−8519.SoftNanoscience,UniversityofMünster,48149Münster,(12)Harris,R.K.;Olivieri,A.C.QuadrupolarEffectsTransferredtoGermany;orcid.org/0000-0003-4029-8262;Spin-1/2Magic-AngleSpinningSpectraofSolids.Prog.Nucl.Magn.Email:hubert.koller@uni-muenster.deReson.Spectrosc.1992,24,435−456.(13)Freude,D.;Haase,J.QuadrupoleEffectsinSolid-StateNuclearAuthorsMagneticResonance.NMRBasicPrinciplesandProgress1993,29,1−ChristianSchroeder−InstituteofPhysicalChemistryand90.CenterforSoftNanoscience,UniversityofMünster,48149(14)Hunger,M.;Freude,D.;Fenzke,D.;Pfeifer,H.1HSolid-StateMünster,Germany;orcid.org/0000-0002-7441-5941NMRStudiesoftheGeometryofBronstedAcidSitesinZeolitesH-StaceyI.Zones−ChevronEnergyTechnologyCompany,ZSM-5.Chem.Phys.Lett.1992,191,391−395.Richmond,California94804,UnitedStates;orcid.org/(15)Fenzke,D.;Hunger,M.;Pfeifer,H.DeterminationofNuclear0000-0002-3128-6481DistancesandChemical-ShiftAnisotropyfrom1HMASNMRSide-ChristianMück-Lichtenfeld−Organisch-ChemischesInstitut,BandPatternsofSurfaceOHGroups.J.Magn.Reson.1991,95,477−483.UniversityofMünster,48149Münster,Germany;(16)Freude,D.;Ernst,H.;Wolf,I.Solid-StateNuclear-Magnetic-orcid.org/0000-0002-9742-7400ResonanceStudiesofAcidSitesinZeolites.SolidStateNucl.Magn.MichaelRyanHansen−InstituteofPhysicalChemistry,Reson.1994,3,271−286.UniversityofMünster,48149Münster,Germany;(17)Brunner,E.LimitationsofResolutionintheH-1MagicAngleorcid.org/0000-0001-7114-8051SpinningNuclear-Magnetic-ResonanceSpectroscopyofZeolite-Completecontactinformationisavailableat:FurtherResults.J.Chem.Soc.,FaradayTrans.1993,89,165−169.https://pubs.acs.org/10.1021/acs.jpcc.0c11379(18)Schroeder,C.;Hansen,M.R.;Koller,H.UltrastabilizationofZeoliteYTransformsBrønsted−BrønstedAcidPairsintoBrønsted−NotesLewisAcidPairs.Angew.Chem.,Int.Ed.2018,57,14281−14285.(19)Koller,H.;Senapati,S.;Ren,J.J.;Uesbeck,T.;Siozios,V.;Theauthorsdeclarenocompetingfinancialinterest.Hunger,M.;Lobo,R.F.Post-SynthesisConversionofBorosilicate■ZeoliteBetatoanAluminosilicatewithIsolatedAcidSites:AACKNOWLEDGMENTSQuantitativeDistanceAnalysisbySolid-StateNMR.J.Phys.Chem.CThisworkwasfundedbytheDeutscheForschungsgemein-2016,120,9811−9820.schaft(DFG,GermanResearchFoundation,KO1817/3-1).(20)Koller,H.;Uesbeck,T.;Hansen,M.R.;Hunger,M.TheauthorsthankChristianBaerlocherandLynneB.CharacterizingtheFirstandSecond27AlNeighborsofBrønstedMcCuskerforhelpfuldiscussions.andLewisAcidProtonsinZeolitesandtheDistributionof27AlQuadrupolarCouplingsby1H{27Al}OffsetREAPDOR.J.Phys.■Chem.C2017,121,25930−25940.ABBREVIATIONS(21)Gullion,T.MeasurementofDipolarInteractionsbetweenSpin-MAS,magicanglespinning;REAPDOR,rotationalecho1/2andQuadrupolarNucleibyRotational-Echo,Adiabatic-Passage,adiabaticpassagedouble-resonance;BAS,Brønstedacidsites;Double-ResonanceNMR.Chem.Phys.Lett.1995,246,325−330.SIMPSON,simulationprogramforsolid-stateNMRspectros-(22)Gullion,T.DetectingC-13-O-17dipolarinteractionsbycopy.rotational-echo,adiabatic-passage,double-resonanceNMR.J.Magn.Reson.,Ser.A1995,117,326−329.■REFERENCES(23)Gullion,T.;Vega,A.J.Measuringheteronucleardipolar(1)Bloch,F.Line-NarrowingbyMacroscopicMotion.Phys.Rev.couplingsforI=1/2,S>1/2spinpairsbyREDORandREAPDOR1954,94,496−497.NMR.Prog.Nucl.Magn.Reson.Spectrosc.2005,47,123−136.4876https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(24)Kalwei,M.;Koller,H.QuantitativeComparisonofREAPDOR(44)Koller,H.;Kalwei,M.Studyingionicmotionintetrahydrox-andTRAPDORExperimentsbyNumericalSimulationsandoboratesodalitebysecondmomentanalysisusingNa-23{B-11}DeterminationofH−AlDistancesinZeolites.SolidStateNucl.rotationalechodoubleresonancedata.J.Phys.Chem.B2004,108,Magn.Reson.2002,21,145−157.58−63.(25)Smeets,S.;McCusker,L.B.;Baerlocher,C.;Elomari,S.;Xie,(45)vanWüllen,L.;Koller,H.;Kalwei,M.ModernsolidstateD.;Zones,S.I.LocatingOrganicGuestsinInorganicHostMaterialsdoubleresonanceNMRstrategiesforthestructuralcharacterizationfromX-rayPowderDiffractionData.J.Am.Chem.Soc.2016,138,ofadsorbatecomplexesinvolvedintheMTGprocess.Phys.Chem.7099−7106.Chem.Phys.2002,4,1665−1674.(26)Burton,A.;Elomari,S.;Chen,C.Y.;Medrud,R.C.;Chan,I.Y.;(46)Villaescusa,L.A.;Barrett,P.A.;Kalwei,M.;Koller,H.;Bull,L.M.;Kibby,C.;Harris,T.V.;Zones,S.I.;Vittoratos,E.S.SSZ-Camblor,M.A.SynthesisandPhysicochemicalCharacterizationofan53andSSZ-59:Twonovelextra-largeporezeolites.Chem.-Eur.J.AluminosilicateZeolitewithIFRTopology,PreparedbytheFluoride2003,9,5737−5748.Route.Chem.Mater.2001,13,2332−2341.(27)Schroeder,C.;Siozios,V.;Muck-Lichtenfeld,C.;Hunger,M.;(47)Fild,C.;Eckert,H.;Koller,H.Charge-inducedpartialorderingHansen,M.R.;Koller,H.HydrogenBondFormationofBronstedofboronaroundstructuredirectingagentsinzeolitesobservedbyC-AcidSitesinZeolites.Chem.Mater.2020,32,1564−1574.13{B-11}rotationalechodoubleresonanceNMR.J.Am.Chem.Soc.(28)Schroeder,C.;Siozios,V.;Hunger,M.;Hansen,M.R.;Koller,2000,122,12590−12591.H.DisentanglingBronstedAcidSitesandHydrogen-BondedSilanol(48)Shantz,D.F.;Fild,C.;Koller,H.;Lobo,R.F.Guest-HostGroupsinHigh-SilicaZeoliteH-ZSM-5.J.Phys.Chem.C2020,124,InteractionsinAs-madeAl-ZSM-12:ImplicationsfortheSynthesisof23380−23386.ZeoliteCatalysts.J.Phys.Chem.B1999,103,10858−10865.(29)Bak,M.;Rasmussen,J.T.;Nielsen,N.C.SIMPSON:A(49)Koller,H.;Weiß,M.;Chan,J.C.C.SolidStateNMRofPorousGeneralSimulationProgramforSolid-StateNMRSpectroscopy.J.Materials:ZeolitesandRelatedMaterials.Top.Curr.Chem.2012,Magn.Reson.2000,147,296−330.306,189−227.(30)Tosner,Z.;Andersen,R.;Stevensson,B.;Eden,M.;Nielsen,N.(50)Sastre,G.;Leiva,S.;Sabater,M.J.;Gimenez,I.;Rey,F.;C.;Vosegaard,T.Computer-intensivesimulationofsolid-stateNMRValencia,S.;Corma,A.ComputationalandexperimentalapproachtoexperimentsusingSIMPSON.J.Magn.Reson.2014,246,79−93.theroleofstructure-directingagentsinthesynthesisofzeolites:The(31)Massiot,D.;Fayon,F.;Capron,M.;King,I.;LeCalve,S.;caseofcyclohexylalkylpyrrolidiniumsaltsinthesynthesisofbeta,Alonso,B.;Durand,J.O.;Bujoli,B.;Gan,Z.H.;Hoatson,G.EU-1,ZSM-11,andZSM-12zeolites.J.Phys.Chem.B2003,107,ModellingOne-andTwo-DimensionalSolid-StateNMRSpectra.5432−5440.Magn.Reson.Chem.2002,40,70−76.(32)TURBOMOLEV7.4,adevelopmentofUniversityofKarlsruheandForschungszentrumKarlsruheGmbH,1989−2007,TURBO-MOLEGmbH.http://www.turbomole.com(accessedlastaccessedDec2019).(33)Perdew,J.P.;Burke,K.;Ernzerhof,M.Generalizedgradientapproximationmadesimple.Phys.Rev.Lett.1996,77,3865−3868.(34)Weigend,F.;Ahlrichs,R.Balancedbasissetsofsplitvalence,triplezetavalenceandquadruplezetavalencequalityforHtoRn:Designandassessmentofaccuracy.Phys.Chem.Chem.Phys.2005,7,3297−3305.(35)Grimme,S.;Ehrlich,S.;Goerigk,L.EffectoftheDampingFunctioninDispersionCorrectedDensityFunctionalTheory.J.Comput.Chem.2011,32,1456−1465.(36)Grimme,S.;Antony,J.;Ehrlich,S.;Krieg,H.Aconsistentandaccurateabinitioparametrizationofdensityfunctionaldispersioncorrection(DFT-D)forthe94elementsH-Pu.J.Chem.Phys.2010,132,154104.(37)Zhao,Y.;Truhlar,D.G.Designofdensityfunctionalsthatarebroadlyaccurateforthermochemistry,thermochemicalkinetics,andnonbondedinteractions.J.Phys.Chem.A2005,109,5656−5667.(38)Sklenak,S.;Dedeček,J.;Li,C.;Wichterlovǎ,B.;Gábová,V.;́Sierka,M.;Sauer,J.AluminumSitinginSilicon-RichZeoliteFrameworks:ACombinedHigh-Resolution27AlNMRSpectroscopyandQuantumMechanics/MolecularMechanicsStudyofZSM-5.Angew.Chem.,Int.Ed.2007,46,7286−7289.(39)Hunger,M.Bronstedacidsitesinzeolitescharacterizedbymultinuclearsolid-stateNMRspectroscopy.Catal.Rev.:Sci.Eng.1997,39,345−393.(40)Koller,H.;Meijer,E.L.;vanSanten,R.A.27AlQuadrupoleInteractioninZeolitesLoadedWithProbeMolecules-AQuantum-ChemicalStudyofTrendsinElectricFieldGradientsandChemicalBondsinClusters.SolidStateNucl.Magn.Reson.1997,9,165−175.(41)Hansen,M.R.;Graf,R.;Spiess,H.W.Solid-StateNMRinMacromolecularSystems:InsightsonHowMolecularEntitiesMove.Acc.Chem.Res.2013,46,1996−2007.(42)Senapati,S.;Zimdars,J.;Ren,J.;Koller,H.Post-SyntheticModificationsofAs-MadeZeoliteFrameworksNearTheStructure-DirectingAgents.J.Mater.Chem.A2014,2,10470−10484.(43)Koller,H.;Fild,C.;Lobo,R.F.Variableanchoringofboroninzeolitebeta.MicroporousMesoporousMater.2005,79,215−224.4877https://dx.doi.org/10.1021/acs.jpcc.0c11379J.Phys.Chem.C2021,125,4869−4877

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭