《Insights into the Formation of Hydroxyl Radicals with Nonthermal Vibrational Excitation in the Meinel Airglow - Chen et al. - 2021 - Unk》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterInsightsintotheFormationofHydroxylRadicalswithNonthermalVibrationalExcitationintheMeinelAirglowQixinChen,XixiHu,*HuaGuo,andDaiqianXieCiteThis:J.Phys.Chem.Lett.2021,12,1822−1828ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:TounderstandnighttimeairglowintheMeinelbandsandheatconversionfromthehighlyexcitedOHradicalsintheupperatmosphereviatheimportantatmosphericreactionH+O3→OH+O2,wereporthereaquasi-classicaltrajectorystudyofthereactiondynamicsonarecentlydevelopedfull-dimensionalpotentialenergysurface(PES).OurresultsindicatethatthereactionenergyofthishighlyexoergicreactionisalmostexclusivelychanneledintothevibrationoftheOHproduct,underscoringanextremedeparturefromthestatisticallimit.ThecalculatedOHvibrationaldistributionishighlyinvertedandpeaksnearthehighestaccessiblevibrationalstate,inexcellentagreementwithexperimentalobservations,validatingtheaccuracyofthePES.Moreimportantly,thedynamicaloriginofthenonthermalexcitationoftheOHvibrationalmodeisidentifiedbyitslargeprojectionontothereactioncoordinateatasmallpotentialbarrierintheentrancechannel,whichcontrolstheenergyflowintovariousdegreesoffreedomintheproducts.EversinceitsfirstdiscoverybyAngströmin1868,airglowapparentlytovibrationalrelaxationoftheOHradicals.inthenightskyhasfascinatedscientistsformorethan100EmissionsfromODwerealsoreportedfortheD+O3years.Itisnowwellestablishedthatthenightglowstemsfromreaction.In1971,Chartersetal.improvedthemeasurementvisiblephotonsemittedbyhighlyexcitedatomsandmoleculesbyusingFouriertransformspectroscopyatlowpressuresinanformedintheupperatmosphereviaeitherchemicalreactionsattempttominimizevibrationalrelaxation.Theirresultsorbycosmicrays.Forinstance,thehydroxylnightglowinthesuggestedthattheOHradicalwasformedwithaninvertedMeinelbandsisbelievedtostemfromspontaneousemissionsvibrationaldistributionwiththepeaknearthehighestofhighlyvibrationallyexcitedOHradicals1,2formedinthe7accessiblevibrationalstate(v=9).However,therelaxationH(2S)+O(X1A)→OH(X2Π)+O(X3Σ−)reaction.3,4The312gofvibrationallyexcitedOHanditssecondaryreactionsinthischemiluminescenceisfacilitatedbyastronglyinvertedsystemhavebeenshowntobeveryfast,8,9whichmightstillvibrationaldistributionintheOHproduct,whichisimpactthechemiluminescenceexperimentofChartersetal.DownloadedviaUNIVOFCONNECTICUTonMay16,2021at10:15:25(UTC).uncommonformostchemicalreactions.Acompleteunder-Later,Ohoyamaetal.investigatedthesameprocessunderstandingoftheOHnightglowthusdemandsknowledgeonsingle-collisionconditionsusingcrossedmolecularbeams,howthevibrationallyexcitedOHproductisformed.Inwhichavoidedenergytransferandsecondaryreactions.10Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.addition,thisreactionisoneofthedominantexothermicTheseauthorsconfirmedtheinvertedOHvibrationalreactionsthatconvertchemicalpotentialenergyintoheatindistributionwithapeakatv=9andfoundlittlepopulationthemesosphere.RadiativerelaxationofthenonthermalOHbelowv=4.Interestingly,theyobservednoODradicalintheMeinelbandscompeteswithheatreleaseviachemiluminescencefortheD+O3→OD+O2reactionincollisionalquenchingofOH(v)byO2,N2,andO.Thekineticthewavelengthrangeof650to900nmatflowratesof15.0modelingoftheheatingefficiencyalsorequiresthenascentand2.0μmol/sfordeuteriumandozone,respectively.5distributionoftheOHvibration.Therefore,noestimateforthenascentvibrationdistributionInthepastseveraldecades,severalexperimentshavebeenoftheODproductwaspossible.ThelatestexperimentwasperformedtomeasurethenascentvibrationaldistributionofcarriedoutbyKlenermanandSmithin1987.TheymeasuredtheOHradicalproducedintheH+O3→OH+O2reaction.Inapioneeringstudyin1968,Anlaufetal.usedanexperimentalmethodbasedoninfraredchemiluminescenceReceived:January16,2021todeterminethevibrationallyspecificratesofthereaction.ByAccepted:February10,2021convertingspectralintensitiestopopulationsusingcalculatedPublished:February12,2021Einsteincoefficients,theseauthorsfoundthattheOHproduct6isexciteduptov=9.However,theresultsfromtheseexperimentsshowedstrongpressuredependence,due©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c001591822J.Phys.Chem.Lett.2021,12,1822−1828
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.EnergeticsoftheH+O→OH+OreactionontheHO(X2A″)PES.TheenergiesarerelativetotheH+Oasymptoteinkcal/mol.3233ThebluevaluesareenergiesofstationarypointsobtainedfromthePES,andtheircorrectionswithZPEareshowninreditalics.theOHvibrationaldistributionbasedoninfraredchemilumi-muchmoreefficientandreasonablyaccurateforthedynamics.nescenceusinganinterferentialspectrometerbyselectionofTheneglectoftunnelingisexpectedtohavealimitedimpactamplitudemodulation(SISAM),whichcanrecordtheweakontheproductstatedistribution,andthevibrationalinfraredchemiluminescentspectraemittedbyreactionquantizationintheproductsiseffectivelydealtwithusinga11productsunderconditionsofarrestedrelaxation.Theirbinningmethodwitha“quantumspirit”,associatedwiththe19experimentfurtherconfirmedtheinvertedOHvibrationalEinstein-Brillouin-Keller(EBK)approach.distributionandthepopulationratiosareingoodagreementInthisLetter,wereportadetailedQCTdynamicstudyofwiththoseofChartersetal.whenthesameEinsteintheH/D+O3reactionsonahighlyaccuratePESrecentlycoefficientswereused.Despitequantitativedifferencesintheconstructedfromalargenumberofmultireferenceconfig-aforementionedexperiments,allsuggestedaninvertedvibra-urationinteraction(MRCI)pointsusingthehigh-fidelitytionaldistributionforOH,whichpeaksnearv=9.Thisispermutationinvariantpolynomial-neuralnetwork(PIP-NN)20,21quiteremarkable,becauseitimpliesthatthereactionenergymethod.TheMRCItreatmentofthePESisessentialdue012−14release(ΔHrxn=77.72±0.06kcal/mol)isalmosttothemultireferencenatureofthissystem.Indeed,thisPESexclusivelychanneledintotheOHvibrationalmode,afarcryhasbeenshowntoreproduceaccuratelythereactionkinetics22fromthestatisticallimitwheretheenergyreleaseisequallyoftheH+O3reaction.Dynamicalcalculationsthatforthe15partitionedintoallproductdegreesoffreedom(DOFs).firsttimeyieldthehighlyinvertedOHvibrationaldistributionThisuniquefeatureofthereactionbegsthequestionaboutthepeakedatthehighestaccessiblevibrationalstateareinmuch7,10,11dynamicaloriginoftheenergydisposal.betteragreementwithexperimentthantheprevious17Thisnonstatisticalcharacterofthereactionimplicatesatheoreticalstudy.Moreover,weidentifiedtheunderlyingdynamicbottleneckwhichcontrolstheenergyflow.TogaindynamicalmechanismfortheextremeOHvibrational23,24insightintotheexperimentalobservations,itisnecessarytoexcitationusingasimpletransition-statebasedmodel,understandthereactiondynamicsandhowitleadstothewhichprovidesarationalinterpretationofthenonstatisticalextremelynonthermalOHvibrationalexcitation.Tothisend,originoftheenergydisposalinthisreaction.twopotentialenergysurfaces(PESs)basedonthedoubleFigure1displaystheenergeticsofthegroundstatemany-bodyexpansion(DMBE)strategyhavebeendevelopedHO(2A″)PES,includingallcalculatedgeometriesand3byVarandasandco-workersattheUCISD/6-311G++(d,p)energiesofstationarypointsalongtheH+O3→OH+O2andQCISD(T)/CBSleveloftheory,respectively(calledreactionpathway.Itisclearthatthereactionishighlyexoergic,16,17DMBEIPESandDMBEIIPES).TheDMBEIIPESiswithareactionenergyof77.71kcal/molwithzeropointessentiallythesameintherate-limitingregionoftheearlierenergy(ZPE)corrections,which,inprinciple,allowstheDMBEIPES,withimprovementsintheHO3complexregion.populationofthev=9vibrationalstateforOHandv=12forUnfortunately,thecalculatedOHvibrationaldistributionOD.IncludingtheinitialtranslationandrotationthermalobtainedontheDMBEIPESusingthequasi-classicalenergies,thehighestaccessiblelevelisv=10forOHandv=trajectory(QCT)methodsignificantlyunderestimatedthe13forOD.Thecis-andtrans-HOOOwellsareseparatedwithOHvibrationalexcitationdeterminedbythelatestexperi-asmallbarrier,andthesefeaturesarenotexpectedtoimpactments.Hence,thesepioneeringtheoreticalstudieshavethedynamicsinasignificantway,thankstotheirlowenergiesprovidedlimitedinsightintotheoriginoftheOHvibrationalrelativetothereactantasymptote.Intheentrancechannel,excitation.thereisatransitionstate(TS),lying0.86kcal/molabovethe20Ideally,reactiondynamics,particularlythoseaffectedbyreactantasymptote,whichwasshowntocontrolthekinetics,quantumeffects,shouldbecharacterizedbyaquantumparticularlyonthetemperaturedependenceoftherate1822mechanicalmethod,butsuchcalculationsarestillbeyondcoefficient.Asdiscussedbelow,italsoplaysakeyroleinthecurrentcomputationalcapabilityduetothelargedeterminingtheenergydisposalinthereaction.Inaddition,exoergicityofthereactionandtheinvolvementofthreethereisalsoaveryshallowvanderWaalswellbeforetheheavyatoms.Inthiswork,weusetheQCTmethod,whichissystemreachestheTS.1823https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTable1.EnergyPartitioninDifferentDOFsoftheProductsat150,298,and640KH+O3D+O3150K298K640K150K298K640Kftrans9.22%10.03%12.29%7.42%8.43%11.25%frot(OH/OD)3.32%3.61%4.61%3.97%3.94%4.64%frot(O2)0.51%0.82%1.54%0.47%0.84%1.54%fvib(OH/OD)85.71%83.22%77.37%87.00%84.86%79.11%fvib(O2)1.23%2.33%4.19%1.14%1.92%3.47%Asdiscussedabove,theH/D+O3reactionishighlyincludedinFigure2(a)alongwiththetheoreticalresultofYu17exoergic.ThecalculatedproductenergydisposalindifferentandVarandas,whichpeaksatν=5.ItisclearfromthefigureDOFsispresentedinTable1.ItisclearthattheOH/ODthattheagreementofourresultwithexperimentisexcellent,vibrationaldegreeoffreedomreceivesthelion’sshare(∼80%)representingasubstantialimprovementoverthepreviousoftheavailableenergy,theenergydisposalthusbeinghighlytheory.Inaddition,theGBmethodyieldsabetteragreementnonstatistical,butthisdominancedecreasessomewhatwithwithexperimentthantheHBmethod.ForOD,asmentionedtemperature.above,thereisnoreliableexperimentaldata,astheonlyreportThecalculatedvibrationaldistributionsfortheproductisnowknowntobecontaminatedbyvibrationalrelaxation.6moleculesOHandODat150KareshownintheFigure2viaLikeintheOHcase,ourdistributionpeaksatv=12,alsotwodifferentbinningmethods,namely,thehistogrambinningsignificantlyhotterthanthatofYuandVarandas.17InTable2,31,32(HB)andGaussianbinning(GB).ThevibrationalthenascentOHpopulationsarelistedfordifferenttemper-distributionsareinvertedforbothOHandOD,withalmostatures.Asshowninthetable,thetemperaturedependenceisnopopulationbelowν=5.ThepeakofthecalculatedOHrelativelyweak.Inthesametable,thevibrationspecificratevibrationaldistributionisatν=8forHBandν=9forGB.Forcoefficientsarealsolisted,whichcanbeusedinthemodeling7,10,11comparison,themeasuredOHdistributionsarealsoofenergytransferfromOH(v)withotheratomsandmolecules.Thesestateresolvedratecoefficientsareobtainedbythefollowingexpression:kTv(,)=kRPMD()(,)TfTv,wherethetotalratecoefficientkTRPMD()isfromourrecent22calculationsusingthering-polymermoleculardynamics25−27(RPMD)method,andf(,)TvarefromthefractionsinTable1.Thepooragreementbetweenthetheoreticaldistributionof17YuandVarandasandexperimentislikelyduetoinaccuracies16intheirDMBEIPES.InsharpcontrasttoourPIP-NNPES,whichhasabarrierof0.86kcal/mol,theDMBEIPEShasasubmergedsaddlepoint,whichis0.48kcal/molbelowthereactantasymptote.Thisdifferenceinthiskeypoint,whichhas22beenshowntoresultinverydifferentratecoefficients,suggeststhattheDMBEIPESmightnotbequantitativelyaccurate,presumablyduetothemultireferenceeffectsnotincludedintheirabinitiocalculations.Indeed,thequantitativereproductionofboththeratecoefficientandOHproductvibrationaldistributionoffersstrongevidenceinsupportoftheaccuracyofthePIP-NNPESanditsunderlyingMRCIcalculations.ThenascentvibrationaldistributionoftheO2productat150KisalsoshowninFigure3forbothH+O3andD+O3reactions.ThevibrationoftheO2moleculeisquitecoldandinsensitivetotheisotopesubstitution,consistentwiththefractionsinTable1.Specifically,thedistributionsdecaymonotonicallywiththevibrationalquantumnumber,andtheyareonlyquantitativelydifferentfromdifferentbinningmethods.Figure4(a)showstherotationaldistributionsofOHandODat150K,whichpeaknearj=3forbothisotopologues,whilethehighestlevelpeaksatj=18.Thisisconsistentwiththeexperimentalestimationthatonly3%ofthetotalreleased7energygoesintoOHrotation.TherotationaldistributionofO2isshowninFigure4(b).Notethatonlytheortho(oddj)statesarepopulatedfor16O,duetonuclearspins,sonoparaFigure2.CalculatedvibrationaldistributionsoftheproductsOH(a)2andOD(b)comparedwiththeavailableexperimentresults.(evenj)statepopulationisincludedinthefigure.1824https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTable2.VibrationalDistributionoftheOHProduct(v=5−9)andVibrationalStateSpecificRateCoefficients(cm3s−1)atDifferentTemperatures150K220K298K360K480K640Kv=90.370.330.330.270.270.24v=80.360.340.300.310.280.30v=70.230.280.270.330.280.25v=60.010.050.050.050.070.07v=50.000.000.000.010.020.03k5.49×10−129.37×10−121.61×10−112.43×10−114.00×10−116.67×10−11RPMDFigure3.VibrationalstatedistributionsoftheO2productat150K.TogaininsightintothemodespecificenergydisposalintheproductDOFspresentedabove,weexaminetheTSintheentrancechannel.TheattackofaterminaloxygenoftheO3reactantbyHleadstoacis-HOOOsaddlepoint,asshowninFigure1.TheH−OdistanceattheSPis2.024Å,whichissignificantlylargerthanthatintheOHproduct(0.972Å).ThislargedifferenceispresumablyresponsibleforitsstrongvibrationalexcitationintheOHproduct.Ontheotherhand,theremainingO2servesessentiallyasaspectator,astheO−ObondlengthinO3,theTS,andO2isessentiallythesame,leadingtominorvibrationalexcitationintheO2product.Furthermore,thepost-TSPESexertsaweaktorqueonthetwodepartingdiatoms,resultinginminorrotationalexcitation.ThispicturehelpstoidentifythedynamicoriginoftheextremeOHvibrationalexcitation.Figure4.RotationalstatedistributionsoftheOH/OD(a)andO2Toprovideamorequantitativepicture,weinvokethe23,24(b)productsat150K.suddenvectorprojection(SVP)model,whichcanbe28consideredasanextensionofPolanyi’srules.TheSVPmodelTable3.SVPProjectionsfortheProductModesoftheH/Dassumestheformationoftheproductsisafastprocess,andthe+O3→OH/OD+O2ReactionproductmodethatcouplesstronglywiththereactioncoordinateattheTSreceivesmostoftheenergyreleaseandspeciesmodeH+O3D+O3viceversa.Denoting⎯Q⇀astheithnormalmodevectoroftheproductrelativetranslation0.0710.042i⎯⇀OH/ODrotation0.0220.010productandQtothereactioncoordinateattheTS,theRCO2rotation0.0260.009couplingstrengthofthetwocanberepresentedastheOH/ODstretch0.9880.992projectionof⎯Q⇀onto⎯Q⇀:P=⎯QQ⇀·⎯⇀∈[0,1].TheO2stretch0.0300.025iRCiiRCprojectionvaluethusreflectstheefficacyforenergydisposalinthesuddenlimit.TheresultsoftheSVPmodel(Table3)D)vibrationpredictsanearexclusiveenergydisposaltotheshowthattheOH/ODvibrationshowsastrongcouplingwithvibrationalmodeoftheOH/ODproduct,consistentwiththethereactioncoordinate,whileallothermodesareonlyweaklyQCTresults.coupledwiththereactioncoordinate.ThefactthattheTogainfurtherinsightintothemicroscopicreactionreactioncoordinateattheTSisdominatedbytheO−H(O−mechanism,wehaveexaminedthedynamicsinmoredetail.1825https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure5(a)showsatypicalreactivetrajectoryforthereaction.exclusivelychanneledintothevibrationintheOHproduct,Forthistrajectoryatarelativetranslationalenergyof4.94underscoringtheradicaldepartureofthisreactionfromthestatisticallimit.ThecalculatedOHvibrationaldistributionisfoundtobestronglyinvertedwithapeaknearthehighestaccessiblevibrationalstate,inexcellentagreementwithexperiment,validatingtheaccuracyofthePES.Thetheory-experimentagreementissubstantiallyimprovedovertheprevioustheoreticalwork,suggestinginaccuraciesintheDMBEIPESusedinthedynamicsstudyofYuand17Varandas.TheODvibrationaldistributionisalsoobtained,andithassimilarcharacteristicsasthatofOH.Thisservesasapredictionforfutureexperimentalstudies.Moreimportantly,ouranalysisidentifiedthedynamicoriginofthenonstatisticalenergydisposalastheuniquereactioncoordinateatasmallbarrierintheentrancechannel,whichhasanexceptionallylargeprojectionfromtheOHvibration.TheelucidationoftheextremevibrationalexcitationoftheOHproductintheH+O3reactionhelpstoshedvaluablelightontheformationofOHairglowintheMeinelbandsintheupperatmosphere.BasedonthepreviouslyreportedPIP-NNPESfortheHO320system,alltheQCTcalculationswereperformedusingthe29,30VENUSprogrampackage.Anensembleof120000trajectorieswascomputedateachofthesixdifferenttranslationaltemperatures,T=150,220,298,360,480,and640K,forboththeH+O3andD+O3reactions.Aftertestingwithasmallsetoftrajectories,themaximalimpactparameterbmaxwasdeterminedtobe3.0Åforbothreactionsovertheentiretemperaturerange.Theinitialrelativetranslationalenergyandro-vibrationalenergiesofreactantsweresampledfromtheBoltzmanndistributionateachtemperature.Meanwhile,theimpactparameterbwasgeneratedaccordingtob=bζ1/2,usingarandomnumber(ζ)rangingfrom0tomax1.Thetimestepinthepropagationwasselectedtobe0.1fstoconvergetheenergywithin0.01kcal/mol.Thetrajectorieswereinitiatedataseparationof10.0Åandterminatedwhenproductsorreactantsareseparatedby10.5Å.Thedifferentialcrosssection(DCS)iscalculatedaccordingtoFigure5.(a)TypicaltrajectoryforthereactionH+O3→OH+O2.(b)Scatteringangledistributionofproductsat150and640K,dσσP()θcomparedwiththeresultsofYuetal.atEt=3.376kJ/mol.rr=rdΩ2sin()πθkcal/molwithanimpactparameterof1.654Å,theproductwherethereactionprobabilityPr()Tatthespecifiedtemper-vibrationalquantumnumbersarev=9forOHandv=1foratureTisgivenbytheratiobetweenthenumberofreactiveO2.ThelargeOHvibrationalexcitationisclearlyseeninthefigureasthestrongoscillationoftheO−Hdistanceafterthetrajectories(Nr)andtotalnumberoftrajectories(Ntotal):impact.Obviously,thereactionisdirectandfast,withoutaPr()TN=rt/Notal.Thescatteringangleθisdefinedasthelong-livedHO3intermediate.TheDCSisshowninFigureanglebetweenthevelocityvectors1vvvf=−11OHO2and5(b),inwhichtheproductsarescatteredinallangles.For1vvvi=−11HO:173comparison,thedistributionreportedbyYuandVarandasisalsoincludedinthefigure,whichdiffersfromthecurrentresultijj11vvif·yzzinthatthedistributionisdominatedinthesmallscatteringθ=arccosjjzzjj||||11vvzzanglesduetoareboundmechanism.Ourangulardistributionkif{ismuchmoreisotropic,suggestingamixtureofseveralObviously,theangleof180°correspondstobackwardmechanisms,includingreboundandstripping,dependingonscattering,while0°correspondstoforwardscattering.Finally,theimpactparameter.thereactiveintegralcrosssection(ICS)atagiventemperatureInsummary,weexplorethedynamicsoftheH+O3iscomputedaccordingtothefollowingformula:reactionanditsdeuteratedcounterpartonarecentlydevelopedaccuratePIP-NNPES,inordertounderstandthe2σπrr()Tb=maxP()ToriginofthestrongvibrationalexcitationintheOHproduct.Thedynamicswassimulatedusingaquasi-classicaltrajectoryTheproductrotationalquantumnumbercanbeeasilymethodwithtwodifferentbinningapproachesfordeterminingderivedfromthediatomicrotationalangularmomentumtheproductvibrationalquantumnumbers.Thedynamical1|jJ|=(1J+)ℏcalculationsindicatethatthereactionexoergicityisalmost1826https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterbyroundingituptothenearestinteger.DaiqianXie−InstituteofTheoreticalandComputationalThemethodtodeterminethevibrationalquantumnumberChemistry,KeyLaboratoryofMesoscopicChemistry,SchoolforthediatomicproductsistheEinstein-Brillouin-KellerofChemistryandChemicalEngineering,NanjingUniversity,19(EBK)approach.Inthismethod,thevibrationalactionNanjing210023,China;orcid.org/0000-0001-7185-variablecanbeexpressedasthesemiclassicalquantizationof7085theactionintegralCompletecontactinformationisavailableat:looÄÅÅ2ÉÑÑ|oo1/2https://pubs.acs.org/10.1021/acs.jpclett.1c001592μÅÅJJ(1+ℏ)ÑÑ1n′=∮mÅÅEVr−()−ÑÑ}dr−oohÅÅ2μr2ÑÑoo2NotesnÅÅÇÑÑÖ~Theauthorsdeclarenocompetingfinancialinterest.whereμisthereducedmass,andhisPlanck’sconstant.ItisworthmentioningthattheEBKsemiclassicalmethodis■capableofhandlinganharmonicityfordiatommolecules.TheACKNOWLEDGMENTSvibrationalquantumnumbersweredeterminedfromtheThisworkwassupportedbytheNationalNaturalSciencenonintegeractionvariablesbybinning.TherearetwobinningFoundationofChina(grantnos.U1932147and22073042tomethods,namely,theHBandGB.31,32X.H.and21733006toD.X.)andinpartbytheUSFortheHBmethod,allthereactivetrajectoriesarecountedDepartmentofEnergy(grantno.DE-SC0015997toH.G.).withthesameweightwiththeactionvariableroundedtotheWearegratefultotheHighPerformanceComputingCenternearestinteger.Theprobabilityofthestatenisthusgivenby(HPCC)ofNanjingUniversityfordoingtheQCTcalculationsonitsbladeclustersystem.Nn()PHB()n=Ntraj■REFERENCES(1)Meinel,A.B.OHemissionbandsinthespectrumofthenightwhereN(n)isthenumberoftheproductsinaparticularskyI.Astrophys.J.1950,111,555−564.vibrationalstatenfromthetotalnumberofthereactive(2)Meinel,A.B.OHemissionbandsinthespectrumofthenighttrajectories(Ntraj).TheHBmethodallowsforthepopulationskyII.Astrophys.J.1950,112(1),120−130.ofenergeticallyforbiddenstates,asclassicalmechanicsdoes(3)Bates,D.R.;Nicolet,M.Thephotochemistryofatmosphericnotobservequantizationofenergylevels.Thisshortcomingwatervapor.J.Geophys.Res.1950,55(3),301−327.canbemitigatedbytheGBmethod,whichconfersa“quantum(4)Herzberg,G.Theatmospheresoftheplanets.J.R.Astron.Soc.spirit”.33Specifically,theGaussianweightofthepthtrajectoryCanada1951,45,100−123.(withanonintegerclassicalactionvariablen′)inagiven(5)Smith,A.K.;López-Puertas,M.;Xu,J.;Mlynczak,M.G.ThevibrationalstateniscalculatedbyheatingefficiencyoftheexothermicreactionH+O3inthemesosphere.J.Geophys.Res.Atmos2015,120(24),12739−12747.β22(6)Anlauf,K.G.;Macdonald,R.G.;Polanyi,J.C.InfraredGnp()=[exp−β(nn′−),]p=1,2,···,Nn()chemiluminescencefromH+O3atlowpressure.Chem.Phys.Lett.π1968,1(13),619−622.whereβ=2(ln2)1/2/δisapositiverealparameter.δisthefull(7)Charters,P.E.;Macdonald,R.G.;Polanyi,J.C.Formationofwidthathalf-maximumthatistakenas0.1inthiswork.TheVibrationallyExcitedOHbytheReactionH+O3.Appl.Opt.1971,Gaussianbinningprobabilityofthestatenisgivenby10(8),1747−1754.(8)Coltharp,R.N.;Worley,S.D.;Potter,A.E.ReactionRateof∑Nn()Gn()VibrationallyExcitedHydroxylwithOzone.Appl.Opt.1971,10(8),p=1p1786−1789.PGB()n=N(9)Spencer,J.E.;Glass,G.P.ThereactionofatomichydrogenwithtrajNO2.Chem.Phys.1976,15(1),35−41.TheGBmethodeffectivelyremovestrajectoriesthatdonot(10)Ohoyama,H.;Kasai,T.;Yoshimura,Y.;Kimura,H.;Kuwata,K.havethequantizedenergies,thuscorrectingtheproblemsinInitialdistributionofvibrationoftheOHradicalsproducedintheH+O→OH(X2Π)+Oreaction.ChemiluminescencebyatheHBmethod.SincethewidthoftheGaussianisquite31/2,3/22narrow,theGBmethodrequiresalargenumberoftrajectories.crossedbeamtechnique.Chem.Phys.Lett.1985,118(3),263−266.(11)Klenerman,D.;Smith,I.W.M.Infraredchemiluminescence■studiesusingaSISAMspectrometer.Reactionsproducingvibration-AUTHORINFORMATIONallyexcitedOH.J.Chem.Soc.,FaradayTrans.21987,83(1),229−CorrespondingAuthor241.XixiHu−KuangYamingHonorsSchool,InstituteforBrain(12)Cox,J.D.;Wagman,D.D.;Medvedev,V.A.CodataKeyValuesSciences,JiangsuKeyLaboratoryofVehicleEmissionsforThermodynamics;HemispherePublishingCorporation:NewYork,Control,CenterofModernAnalysis,NanjingUniversity,Washington,Philadelphia,London,1989.Nanjing210023,China;orcid.org/0000-0003-1530-(13)Taniguchi,N.;Takahashi,K.;Matsumi,Y.;Dylewski,S.M.;Geiser,J.D.;Houston,P.L.Determinationoftheheatofformationof3015;Email:xxhu@nju.edu.cnO3usingvacuumultravioletlaser-inducedfluorescencespectroscopyAuthorsandtwo-dimensionalproductimagingtechniques.J.Chem.Phys.QixinChen−InstituteofTheoreticalandComputational1999,111(14),6350−6355.(14)Ruscic,B.;Pinzon,R.E.;Morton,M.L.;Srinivasan,N.K.;Su,Chemistry,KeyLaboratoryofMesoscopicChemistry,SchoolM.-C.;Sutherland,J.W.;Michael,J.V.ActiveThermochemicalofChemistryandChemicalEngineering,NanjingUniversity,Tables:AccurateEnthalpyofFormationofHydroperoxylRadical,Nanjing210023,ChinaHO2.J.Phys.Chem.A2006,110(21),6592−6601.HuaGuo−DepartmentofChemistryandChemicalBiology,(15)Levine,R.D.MolecularReactionDynamics;CambridgeUniversityofNewMexico,Albuquerque,NewMexico87131,UniversityPress:Cambridge,2005;DOI:10.1017/UnitedStates;orcid.org/0000-0001-9901-053XCBO9780511614125.1827https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(16)Varandas,A.J.C.;Yu,H.G.Doublemany-bodyexpansionpotentialenergysurfaceforground-stateHO3.Mol.Phys.1997,91(2),301−318.(17)Yu,H.G.;Varandas,A.J.C.DynamicsofH(D)+O3reactionsonadoublemany-bodyexpansionpotential-energysurfaceforgroundstateHO3.J.Chem.Soc.,FaradayTrans.1997,93(16),2651−2656.(18)Zhang,D.H.;Guo,H.RecentAdvancesinQuantumDynamicsofBimolecularReactions.Annu.Rev.Phys.Chem.2016,67,135−58.(19)Gutzwiller,M.C.ChaosinClassicalandQuantumMechanics;SpringerScience+BusinessMediaNewYork:NewYork,1990;DOI:10.1007/978-1-4612-0983-6.(20)Zuo,J.;Chen,Q.;Hu,X.;Guo,H.;Xie,D.TheoreticalInvestigationsofRateCoefficientsforH+O3andHO2+OReactionsonaFull-DimensionalPotentialEnergySurface.J.Phys.Chem.A2020,124(32),6427−6437.(21)Hu,X.;Zuo,J.;Xie,C.;Dawes,R.;Guo,H.;Xie,D.Anabinitiobasedfull-dimensionalpotentialenergysurfaceforOH+O2⇄HO3andlow-lyingvibrationallevelsofHO3.Phys.Chem.Chem.Phys.2019,21(25),13766−13775.(22)Chen,Q.;Hu,X.;Guo,H.;Xie,D.TheoreticalH+O3ratecoefficientsfromringpolymermoleculardynamicsonanaccurateglobalpotentialenergysurface:Assessingexperimentaluncertainties.Phys.Chem.Chem.Phys.2021,DOI:10.1039/D0CP05771A.(23)Jiang,B.;Guo,H.Relativeefficacyofvibrationalvs.translationalexcitationinpromotingatom-diatomreactivity:rigorousexaminationofPolanyi’srulesandpropositionofsuddenvectorprojection(SVP)model.J.Chem.Phys.2013,138(23),234104.(24)Guo,H.;Jiang,B.Thesuddenvectorprojectionmodelforreactivity:modespecificityandbondselectivitymadesimple.Acc.Chem.Res.2014,47(12),3679−3685.(25)Habershon,S.;Manolopoulos,D.E.;Markland,T.E.;Miller,T.F.,III.Ring-polymermoleculardynamics:quantumeffectsinchemicaldynamicsfromclassicaltrajectoriesinanextendedphasespace.Annu.Rev.Phys.Chem.2013,64,387−413.(26)Suleimanov,Y.V.;Allen,J.W.;Green,W.H.RPMDrate:Bimolecularchemicalreactionratesfromringpolymermoleculardynamics.Comput.Phys.Commun.2013,184(3),833−840.(27)Suleimanov,Y.V.;Aoiz,F.J.;Guo,H.ChemicalReactionRateCoefficientsfromRingPolymerMolecularDynamics:TheoryandPracticalApplications.J.Phys.Chem.A2016,120(43),8488−8502.(28)Polanyi,J.C.Conceptsinreactiondynamics.Acc.Chem.Res.1972,5(5),161−168.(29)Hu,X.;Hase,W.L.;Pirraglia,T.VectorizationofthegeneralMonteCarloclassicaltrajectoryprogramVENUS.J.Comput.Chem.1991,12(8),1014−1024.(30)Hase,W.L.;Duchovic,R.J.;Hu,X.;Komornicki,A.;Lim,K.F.;Lu,D.H.;Peslherbe,G.H.;Swamy,K.N.;Linde,S.R.R.V.;Varandas,A.VENUS96:ageneralchemicaldynamicscomputerprogram.J.QuantumChem.ProgramExch.Bull.1996,16,671.(31)Bonnet,L.;Rayez,J.C.Quasiclassicaltrajectorymethodformolecularscatteringprocesses:necessityofaweightedbinningapproach.Chem.Phys.Lett.1997,277(1),183−190.(32)Bonnet,L.;Rayez,J.-C.Gaussianweightinginthequasiclassicaltrajectorymethod.Chem.Phys.Lett.2004,397(1−3),106−109.(33)Bonnet,L.Classicaldynamicsofchemicalreactionsinaquantumspirit.Int.Rev.Phys.Chem.2013,32(2),171−228.1828https://dx.doi.org/10.1021/acs.jpclett.1c00159J.Phys.Chem.Lett.2021,12,1822−1828
此文档下载收益归作者所有