Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown

Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown

ID:81816494

大小:2.23 MB

页数:7页

时间:2023-07-20

上传者:U-14522
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第1页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第2页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第3页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第4页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第5页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第6页
Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown_第7页
资源描述:

《Accelerated Hot-Carrier Cooling in MAPbI 3 Perovskite by Pressure- Induced Lattice Compression - Muscarella et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterAcceleratedHot-CarrierCoolinginMAPbI3PerovskitebyPressure-InducedLatticeCompressionLoretaA.Muscarella,ElineM.Hutter,JarvistM.Frost,GianlucaG.Grimaldi,JanVersluis,HuibJ.Bakker,andBrunoEhrler*CiteThis:J.Phys.Chem.Lett.2021,12,4118−4124ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Hot-carriercooling(HCC)inmetalhalideperovskitesabovetheMotttransitionissignificantlyslowerthaninconventionalsemiconductors.Thiseffectiscommonlyattributedtoahot-phononbottleneck,buttheinfluenceofthelatticepropertiesontheHCCbehaviorispoorlyunderstood.Usingpressure-dependenttransientabsorptionspectroscopy,wefindthatatanexcitationdensitybelowtheMotttransition,pressuredoesnotaffecttheHCC.Onthecontrary,abovetheMotttransition,HCCinmethylammoniumleadiodideisaround2−3timesfasterat0.3GPathanatambientpressure.Ourelectron−phononcouplingcalculationsreveal∼2-foldstrongerelectron−phononcouplingfortheinorganiccagemodeat0.3GPa.However,ourexperimentsrevealthatpressurepromotesfasterHCConlyabovetheMotttransition.Altogether,thesefindingssuggestachangeinthenatureofexcitedcarriersabovetheMotttransitionthreshold,providinginsightsintotheelectronicbehaviorofdevicesoperatingatsuchhighcharge-carrierdensities.Photoexcitationwithaphotonenergylargerthanthecoolinghasbeenexplainedfromaneffectthatiscommonlybandgapofsemiconductorsresultsintheformationofaknownasahot-phononbottleneck.Theoriginofthisnonthermaldistributionof“hotchargecarriers”(i.e.,high-phenomenonisstillunderdebate,butithasbeenattributedenergyelectronsintheconductionbandandhigh-energyholestoseveralmechanismssuchastheaccumulationofopticalinthevalenceband).Insemiconductorsolarcells,these12,18,3phononsthatcannotbeeasilydissipated,optical−chargesrelaxtotheconduction(andvalence)bandedge1419−21acousticphononupconversion,andpolaronformation.1,2beforetheyarecollected.Thefirststepisthermalization,Metalhalideperovskitesarepolarsemiconductors,andthus,occurringwithinafewhundredfemtoseconds,wherethetheirelectronicpropertiesareexpectedtobestronglycoupledgeneratedhotcarriersinteractwitheachotherthroughwiththelatticevibrations.ApplyingexternalpressuredirectlyDownloadedvia132.154.190.232onMay14,2021at07:39:02(UTC).carrier−carrierscatteringuntiltheyreachacommonquasi-affectsthelatticedynamicsandthereforecanbeusedtotuneFermitemperature,usuallymuchhigherthanthelatticepropertiesthatarestronglydependentonthelatticevibrations,temperature.Subsequently,hot-carriercooling(HCC)occurssuchastheelectron−phononcouplingandthephononthoughcarrier−phononorcarrier−impurityscatteringuntilalifetimes.Changesinoneorbothofthesequantitiescanthermalequilibriumwiththelocallatticeisreached,usuallyonaffecttheHCC.Increasingtheelectron−phononcouplingisSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.1,3,4picosecondtimescales.Inthisstep,heatisdissipatedintheexpectedtoleadtofasterHCC.Replacingiodidewithalighterlatticethroughacousticphonons.Insolarcells,33%ofthehalideincreasesthefrequencyofthelongitudinaloptical5,6energyofsunlightislostasheatduringthethermalizationphononmode(ω)22andthusshortenstheHCCtimeLOandcoolingprocesses.SlowHCCisdesiredforthermoelectricmeasuredunderthesameexcessofenergyandexcitation78devicesandhot-carriersolarcellswhereextractingcarriersdensityconditions.23,24,3InMAPbI,theacousticphonon3beforetheyhavecooledcouldenablebreakingthelifetime,responsibleforheattransport,hasbeenfoundtobeinthermodynamiclimitforsingle-junctionsolarcells.Emissive25,26910therangeofafewpicoseconds,2ordersofmagnitudeapplicationssuchaslasers,single-photonsources,and2711shorterthaninconventionalsemiconductors.Thus,theopticalmodulatorsrequireshortHCCtimesforefficientthermaltransportatroomtemperatureinMAPbI3ishighlyradiativerecombinationandtopreventcarriertrapping.Inparticularforlasers,understandingtheelectronicpropertiesathighcarrierdensityrequiredtoobtainlasingisessential.Received:March2,2021Inmetalhalideperovskites,theHCCtimescalewasfoundAccepted:March29,2021tobesignificantlyslower3,12−14thaninconventionalsemi-Published:April23,20211512conductorslikeInNorGaAsunderthesame(high)excitationdensityconditions.Inaddition,theHCCisslower3,16,17withanincreaseintheexcitationdensity.Thisslower©2021TheAuthors.PublishedbyAmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c006764118J.Phys.Chem.Lett.2021,12,4118−4124

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.Schematicrepresentationofthe(a)pressure-dependentfs-TAsetupshowingthegenerationofhotcarriers(whitespotonthesample)and(b)HCCmechanismfollowingphotoexcitation.Figure2.Charge-carriercoolingasafunctionofhydrostaticpressuremeasuredbypressure-dependenttransientabsorptionspectroscopy.ΔT/TtracesofMAPbIwithaninitialcarrierconcentrationof7.0×1017photons/cm3(a)atambientpressureand(b)at0.3GPaasafunctionofthe3probeenergy.ΔT/TtracesofMAPbIwithaninitialcarrierconcentrationof5.9×1018photons/cm3(c)atambientpressureand(d)at0.3GPa3asafunctionofprobeenergy.321inefficientifnothermalmanagementstrategyisapplied.Ifthephotons/cm.Werefertothe“Motttransition”asachangeacousticphononlifetimeincreases,theHCCisexpectedtoinelectronicspeciesfromisolatedpolaronsactingindepend-becomefaster.Understandinghowlatticepropertiesrelateentlyofanelectron−holeplasmawherethethermalenergyiswithHCCprovidesinsightsintotheelectronicbehaviorofsharedbetweenoverlappingpolarons.Atanexcitationdensitydevicesoperatingatdifferentcharge-carrierdensities.Thus,anabovetheMotttransitionthreshold(5.9×1018photons/cm3),effectivestrategyformanipulatingadhoctheHCCtimeistheHCCissignificantlyslower(2−3ps)atambientpressurerequiredtodesigndeviceswithtargetedapplicationsoperatingbutacceleratesbyafactorof2−3withanincreaseinpressureinacertaincharge-carrierdensityregime.to0.3GPa.InsolarcellsandoptoelectronicdevicesoperatingInthiswork,wecombinepressure-dependentfemtosecondabovetheMotttransition(>1018photons/cm3),afasterHCCtransientabsorptionspectroscopy(fs-TAS)andelectron−timescalemayallowforafasterdissipationofheatandphononcouplingcalculationstoelucidatetheeffectoflatticethereforealoweroperatingtemperature.compressiononthefactorsthatinfluencetheHCC.WeuseSolution-processedMAPbI3thinfilmsweredepositedbypressure-dependentfs-TAStoexperimentallyprobetheHCCspincoatingontoquartzsubstratesasreportedintheMethods.timeinMAPbI3atroomtemperatureatpressuresrangingfromAbsorbancemeasurementsasafunctionofpressureandX-ray0to0.3GPaatvaryinglightintensities.Atalowexcitationdiffractionmeasurementswereperformedonthesampletodensity(7×1017photons/cm3),theHCCtimeisfast(0.3−confirmthebandgapenergyandthehighcrystallinityofthe0.5ps)andindependentofpressure.Ahighexcitationdensitysample(FigureS1).Pressure-dependenttransientabsorption(>1018photons/cm3)triggersaMotttransition,previouslymeasurementswereperformedinsideahydrostaticpressurecalculatedtooccuratanexcitationdensityof>7×1017cellfilledwiththeinerthydraulicliquidtetradecafluorohexane4119https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.TwofittingstrategiesfordeterminingtheHCCtimeasafunctionofpressure.(a)NormalizedΔT/Tintegratedintherangeof1.75−1.80eVintheGSBtailasafunctionoftimeanddelaytimeforanexcitationdensityof5.9×1018photons/cm3atdifferentappliedpressures.ThedecayoftheGSBtailbecomesfasterwithanincreaseinpressure.(b)HCCtimeextractedfromthefitofthetaildecayasafunctionofpressureabove(red)andbelowtheMotttransitionthreshold(blue).(c)Carriertemperatureobtainedbyfittingthehigh-energytailoftheGSBwithaMaxwell−Boltzmanndistribution,asafunctionofdelaytimeforahighexcitationdensityof5.9×1018photons/cm3atdifferentappliedpressures.(d)HCCtimeobtainedfromthefitofthetemperaturedecayasafunctionofpressureabove(red)andbelow(blue)theMotttransitionthreshold.[FC-72(seeMethods)]asdepictedinFigure1a.A100fsthreefeatures:(i)apositiveΔT/Tcenteredatthebandgappulsedpumpbeamwithanenergyof3.1eVisusedtoenergyof∼1.67eVcorrespondingtothegroundstatebleachphotoexcitethesample,whereasa100fspulsedprobebeam(GSB)signalthatresultsfromthebandfillingeffect,(ii)a(whitelight)isusedtoprobetheexcitation-inducedchangeinnegativeΔT/Tfeatureatenergiesbelowthebandgap(<1.67transmissionofMAPbI3onapicosecondtimescale.ThetwoeV)atearlytimesresultingfromthebandgapdecreaseinduced2beamsareoverlappedonthesampleinsidethepressurecell,bythehighenergycarriers,and(iii)anegativeandbroadandthearrivaltimeofthetwopulsesiscontrolledwithadelayΔT/Tsignalatenergiesabovethebandgap(≳1.7eV)stage.Toensuretheabsenceofanynonlineareffects,weresultingfromlightabsorptionofthephotogeneratedcarriers.investigatedtheHCCprocessatexcitationdensitiesabovethePseudocolorTAplotsofthesamesampleasafunctionoftheMotttransition,butwheretheΔT/Tstillexhibitslinearpump−probedelayandprobeenergyarereportedinFigurebehaviorwiththepumpfluence(FigureS2).S4.PhotoexcitationwithaphotonenergylargerthantheThehot-carrierpopulationisevidentfromthewidthoftheMAPbI3bandgapledtoapopulationofhigh-energycarriersinitialGSBsignal,whichshrinksoverthecourseofthe(electronsandholes)withnocommontemperature(Figuremeasurement(picosecondtimescale)asthehotcarrierscool1b,darkredcurve)thatundergorapid(∼85fs)thermalization,tothelatticetemperature.Thisfeaturerepresentsanaverageoffasterthanourtemporalresolution.Thisthermalizationthehotelectronandhotholetemperaturesgiventheeffective28processresultsfromcarrier−carrierscattering.Theresultingmassesareverysimilar.hot-carrierpopulationcanbedescribedasaquasi-FermiAcomprehensivemodeltoobtaintheHCCtimefromthedistribution.Oncethehot-carrierpopulationreachesatransientabsorptionmeasurementshasstilltobedeveloped,commontemperatureTc(Figure1b,redcurve),higherthanbutseveralmethodsarecommonlyusedtoobtaintheHCC13,16,29thelatticetemperatureTL,carrier−phononinteractionstimeandtemperature.WeusetwofittingstrategiestodominatetheHCCuntilTcisinequilibriumwithTL(FigureobtainthetrendoftheHCCtimeasafunctionofpressureand1b,yellowcurve).excitationdensity.BothstrategiesyieldacomparableHCCPanelsa−dofFigure2showrepresentativeultrafasttimewithanincreaseinpressureandforbothexcitationtransientabsorptiontracesforapump−probedelaybetweendensities.ThefirstmethodconsistsofintegratingtheΔT/Tin0and5psofMAPbI3photoexcitedat3.1eV(bandgapof1.7theregionofthehigh-energyGSBtailfrom1.75to1.80eVeV)withaninitialcarrierdensitynof7.0×1017photons/cm3andplottingtheresultasafunctionofdelaytime.The0(Figure2a,b)and5.9×1018photons/cm3(Figure2c,d)atintegratedrangeishighlightedingrayinFigure2.Weplottheambientpressureandat0.3GPa,respectively.Thecarrierintegratedtracesforthehigh-densityregimeinFigure3a.WedensityiscalculatedasdescribedinSupplementaryNote1.NofitthetracesatfluencesbelowandabovetheMotttransitiondegradationisobservedatahighexcitationdensityaswithaconvolutionoftheinstrumentalresponsefunctiondemonstratedinFigureS3fromthestabilityoftheTAsignal(IRF)andanexponentialdecayfunction(seeSupplementaryoverthecourseofthemeasurement.TheΔT/TtracesshowNote2fortheanalyticalfunctionandFigureS5fortheIRF4120https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.(a)Strengthofelectron−phononcouplingoftheMAPbI3phononmodestotheconductionbandminimum(CBM)attheΓpointintheBrillouinzoneina2×2×2supercell,listedinascendingphononenergy.Highlightedingrayisphononmode5(∼27cm−1,∼0.8THz),affectedmoststronglybypressure.(b)Electron−phononcouplingofmode5(∼27cm−1,∼0.8THz)asafunctionofpressure.Theinsetshowsatomicmotionsrelatedtophononmode5(octahedraltwist).fit).BelowtheMotttransitionthreshold(7×1017photons/obtainedwiththeintegrationmethodshowninFigure3b.Ascm3),nopressuredependencyisobserved,showingfast(∼0.3before,belowtheMotttransitionthreshold,HCCisfast,andps)HCCatallpressuresinvestigated(Figure3b,blue).Abovethereisnovariationwithintheexperimentalerror.InthetheMotttransitionthreshold,thedecaycomprisesafastregimeabovetheMotttransition,wefindagainthattheHCCcomponentwithatimeconstantofafewpicosecondsis2−3timesfasterbetween0and0.3GPa,thesameresult(attributedtotheHCC)andaslowcomponentwithatimeobtainedwiththeintegrationmodel.constantontheorderoftensofpicoseconds.ThepresenceofItiswell-establishedthattheHCCtimedependsonanadditionalslowerprocessabovetheMotttransitionhasexperimentalparametersliketheambienttemperature,thebeenshownpreviously,anditsoriginisstillunderexcessofexcitationenergycomparedtothebandgapofthedebate;13,14,30,31therefore,wecomparethetwofastcompo-3,20,34material,andtheexcitationdensity.Wecanexcludenentsatthetwoexcitationdensitiesused.Thetimeconstantsignificantchangesintheseparameters(seeSupplementaryfortheshort-livedcomponentabovetheMotttransitionisNote4fordetails)withachangeinpressure,andtherefore,weplottedinFigure3b(red).Thisexperiment,contrarytothecanattributethepressure-dependenttrendobservedsolelytoonebelowtheMotttransitionthreshold,showsalmost3timeschangesinthematerialpropertiesfollowingcompression,infasterHCC(timeconstantof∼1ps)at0.3GPacomparedtoparticularintheelectron−phononcoupling.thatatambientpressure(∼3ps).TounderstandwhatishappeningonamicroscopicscaleTomakesuretheextractedtrendoftheHCCtimewithwithinthematerialasafunctionofpressure,wecalculatethepressureisnotaffectedbytheenergyrangeintegrated,weelectron−phononcouplingforallofthephononmodes.TheperformedthesamefitbutintegratingΔT/TinvariousenergyresultsoftherelevantphononmodesareshowninFigure4a.rangesofthebroadtail(FiguresS6andS7aboveandbelowInthesecalculations,weuniformlyincreasethepressureinatheMotttransitionthreshold,respectively).TheabsolutesemilocalDFTelectronicstructurecalculation(seeMethods),valuesoftheHCCtimeconstantsslightlyvary,butthetrendasstartingwithanambient-pressurepseudocubicMAPbI3afunctionofpressureisconsistent.Thesecondmethodused35structure.ThenumberofphononmodesshowninFiguretoobtaintheHCCtimeconsistsofapproximatingthehigh-144aistheindexinascendingenergyorder.AdetailedenergytailoftheGSBandthenegativePIAwithamodified13,32,33assignmentanddescriptionofthephononmodescanbeMaxwell−BoltzmanndistributionfunctionasreportedinfoundinSupplementaryNote5andisreportedbyLeguyetSupplementaryNote3.Thefityieldsthecarriertemperatures3637,38al.PreviousworkshaveshownthatthedominantshowninFigure3casafunctionofdelaytimeforambientphononmodecoupledtotheexcitedstatedynamicsobservedpressureandtworepresentativehigh-pressureconditions.Thebyfs-TASinMAPbIhasafrequencyof∼27cm−1(∼0.8initialtemperaturedependsontheexcessenergyofthe3THz)andthatthereisasomewhatlessstronglycoupledmodephotoinducedcarriers,andtheexcitationdensity.Thisistheathigherfrequencies.Forthisreason,weconfineourtemperaturereachedbythecarriersdirectlyafterthethermalization.Interestingly,weobserveahigherinitialhot-discussiontophononmodes4−9,representingoctahedralcarriertemperaturewithanincreaseinpressure.Theslighttwistanddistortion,asthesearethemostrelevantforthered-shiftinthebandgapenergy[7meV(FigureS8)]whenwecouplingwiththeelectronsattheconductionbandminimum.increasethepressurecannotaccountforthiseffect.WethusWhereasmostphononmodesshownocleartrendwithconcludethatpressuremayhaveaneffectonthethermal-pressure,theelectron−phononcouplingofmode5(∼27cm−1,∼0.8THz)associatedwiththeoctahedraltwist,izationprocess,aswell,butbecausethisprocessisfasterthanourtemporalresolution,wecannotfurtherinvestigatethishighlightedingrayinFigure4a,showsasignificantandeffect.ThecoolingtimeplottedinFigure3dfortheregimeapproximatelylinearincrease(Figure4b)whenthepressurebelowandabovetheMotttransition(inblueandred,increasesfromambientpressureto1GPa,witha2-foldrespectively)isobtainedbyfittinganexponentialdecayenhancementat0.3GPacomparedtoambientpressure.functiontothecurveinFigure3c,takingintoaccounttheAquantitativepredictionofHCC(aphenomenologicaltemperatureerrorsofeachdatapoint.TheHCCatambientquantity)fromthecalculationofmicroscopicelectron−pressureismuchslowerthanathighpressure,asreflectedinaphononcouplingmatrixelementsrequiresamechanisticlongerHCCtime.Theabsolutevaluesobtainedbythisfittingmodelofthecoolingprocesses,andadetailedconsiderationprocedureforthecoolingtimeareslightlylowerthanthoseoftheelectron−phononinteractionacrossthedoubleelectron4121https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterandphononBrillouinzones.ThisisbeyondthescopeofthisInconclusion,weusedpressure-dependentfs-TAStowork.investigatetheeffectofexternalpressureonhot-carriercoolingOnewouldanticipatethatthegreaterelectron−phononinMAPbI3thinfilms.WefoundthatbelowtheMotttransitioncouplingatahigherpressurewouldresultinfasterHCC,boththreshold,theHCCtimeisnotaffectedbypressure,whereasitbelowandabovetheMotttransition.However,weobserveabecomes2−3timesfasterabovetheMotttransition.OurdependenceonpressureonlyabovetheMotttransitioncalculationsreveala2-foldenhancementoftheelectron−threshold.Belowthat,HCCisfast(0.3−0.5ps)andphononcouplingforthemoderelatedtotheoctahedraltwistindependentofpressure.Inapolarmaterial,thedielectricwhenthepressureisincreasedfromambientpressureto0.3electron−phononcouplingdominatesbecauseitislong-GPa.Thesefindings,togetherwiththeobserveddifferenceinrange39andwillprovidethemainchannelbywhichelectronsthebehaviorinthelow-andhigh-densityregime,suggestthephotoexcitedabovethebandgapwilllosetheirenergy.ThispresenceoftwodifferentmechanismsdominatingHCCatthecouplinginvolvestheinteractionofthechargeofthecarrierstwoexcitationdensitiesexplored.BelowtheMotttransitionwiththetransitiondipolemomentofthesurroundingphononthreshold,wherepolaronsdonotoverlap,thelong-rangemodes.Thevariationalpolaronmethodpredictsapolarondielectricelectron−phononcouplingdominates.Abovetherelaxationtimeconstantof∼0.1ps40forthismaterial,whichisMotttransitionthreshold,thiscontributionissuppressedasconsistentwithourobservationofaveryshortHCCtime.Thisthepolarizationfieldsofthepolaronsoverlapforminganlong-rangedielectriccouplingisnotexpectedtobeelectron−holeplasmaandtheHCCoccursvialocalelectron−significantlyaffectedbypressure,41inagreementwithourphononcoupling.Thislocalcontributionissignificantlyweakeratambientpressure,leadingtoslowHCC,butobservations.increaseslinearlyoverthe0.3GPapressurerangestudied.AbovethethresholdfortheMotttransition,weproposethatThesefindingscontributetotheunderstandingofhowappliedthisdielectriccouplingisscreened,andinstead,theHCCstresscanbeusedtocontroltheHCCtimeinhalideproceedsviatheweakerlocalelectron−phononcoupling.Weperovskitedevicesforemissiveapplicationssuchaslasersandcalculatethatthislocalelectron−phononcouplingispropor-single-photonsources.tionaltopressureoverthepressurerangeof0−0.3GPa(infactwefindalineartrendupto1.0GPa),sotheHCCabovetheMotttransitionbecomesfasterwithpressure.Thisresultis■ASSOCIATEDCONTENT42relatedtowhathasbeenfoundbyMohananetal.,who*sıSupportingInformationattributedthepresenceofahot-phononbottlenecktotheTheSupportingInformationisavailablefreeofchargeatdepositionofalargeportionoftheinitialenergyontheopticalhttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00676.modesat27cm−1(∼0.8THz).ThesedonotefficientlydissipatetheexcessenergyastheyareisolatedfromtherestofMethods,AbsorptionandXRDspectraofMAPbI3thinfilms,ΔT/Tasafunctionofprobeenergyandrealtimethelattice.OurfindingsthusrevealthatenhancementoftheofforMAPbI3atambientpressurefordegradation,two-theelectron−phononcouplingunderpressurecanbeusedtodimensionalplotofΔT/TasafunctionofprobeenergymanipulateHCCatdensitiesabovetheMotttransitionandtimeforMAPbI3atambientpressureand0.3GPa,density,whilehavingnoeffectintheregimebelow,whereIRFasafunctionofpressurecalculatedfromMAPbI3long-rangedielectricelectron−phononcouplingdominates.excitedresonantlyat800nm,coolingtimeextractedTheexcitationdensitythatweassignfortheMotttransitionfromtheintegrationofΔT/Tinvariousenergyrangescomesfromconsideringthepolaronsize.Analternativeofthebroadtailasafunctionofpressureinthelow-andinterpretationoftheobservedpressuredependenceofthehigh-densityregime,MAPbI3bandgapasafunctionofcoolingtimecouldbethatthisMotttransitionisbeingpushedpressure,excitationdensitycalculation,fittingfunctiontoahigherdensityunderpressure.ThischangewouldrequireforΔT/Tdecayinthehigh-energytail,influenceofthatthepolaronsbemorelocalizedathigherpressures.Inturn,experimentalconditionsonHCCtime,andassignmentwithintheFröhlichtheory,thiswouldrequireaconsiderablyoftheopticalmodes(PDF)largerdielectricelectron−phononcoupling,oraconsiderablylargereffectivemass.However,wearecautiouswiththisinterpretationasthevibrationalandopticalpropertiesdonot■AUTHORINFORMATIONchangesignificantlyoverthispressurerange.CorrespondingAuthorThehot-phononbottleneckinaMAPbI3perovskitehasalsoBrunoEhrler−CenterforNanophotonics,AMOLF,1098XGbeenattributedtotheextremelyshortacousticphonon43Amsterdam,TheNetherlands;orcid.org/0000-0002-lifetimeofthismaterial,whichalsocausesitslowthermal445307-3241;Email:b.ehrler@amolf.nlconductivity.Ashortacousticphononlifetimecanthusberesponsibleforthesuppressionofheatdissipation,asthisAuthorsenergycouldbereabsorbedbyopticalphononsandthuscreateLoretaA.Muscarella−CenterforNanophotonics,AMOLF,ahot-phononbottleneckthatslowsthecoolingofthehot1098XGAmsterdam,TheNetherlands;orcid.org/0000-electron−phononplasma.Althoughthismechanismoccursin0002-0559-4085thesecondstageofthecooling(tensofpicoseconds),itmightElineM.Hutter−CenterforNanophotonics,AMOLF,1098havesomeminorinfluenceonthefirstcoolingstage,aswell.XGAmsterdam,TheNetherlands;DepartmentofChemistry,DeterminingtheextenttowhichthefasterHCCresultsfromUtrechtUniversity,3584CBUtrecht,TheNetherlands;onlytheenhancedelectron−phononcouplingorfromaorcid.org/0000-0002-5537-6545combinationwithalongeracousticphononlifetimewouldJarvistM.Frost−DepartmentofPhysics,ImperialCollegerequireanexpensivecomputationthatisbeyondthescopeofLondon,LondonSW72AZ,UnitedKingdom;orcid.org/thiswork.0000-0003-1938-44304122https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterGianlucaG.Grimaldi−CenterforNanophotonics,AMOLF,(11)Wang,C.Y.;Liu,M.;Feng,M.;Holonyak,N.Microwave1098XGAmsterdam,TheNetherlands;CavendishExtractionMethodofRadiativeRecombinationandPhotonLifetimesLaboratory,Cambridge,CambridgeCB30HE,Unitedupto85°Con50Gb/sOxide-VerticalCavitySurfaceEmittingLaser.Kingdom;orcid.org/0000-0002-2626-9118J.Appl.Phys.2016,120,223103.JanVersluis−CenterforNanophotonics,AMOLF,1098XG(12)Yang,Y.;Ostrowski,D.P.;France,R.M.;Zhu,K.;VanDeLagemaat,J.;Luther,J.M.;Beard,M.C.ObservationofaHot-Amsterdam,TheNetherlandsPhononBottleneckinLead-IodidePerovskites.Nat.Photonics2016,HuibJ.Bakker−CenterforNanophotonics,AMOLF,109810,53.XGAmsterdam,TheNetherlands;orcid.org/0000-0003-(13)Verma,S.D.;Gu,Q.;Sadhanala,A.;Venugopalan,V.;Rao,A.1564-5314SlowCarrierCoolinginHybridPb-SnHalidePerovskites.ACSCompletecontactinformationisavailableat:EnergyLett.2019,4(3),736−740.https://pubs.acs.org/10.1021/acs.jpclett.1c00676(14)Yang,J.;Wen,X.;Xia,H.;Sheng,R.;Ma,Q.;Kim,J.;Tapping,P.;Harada,T.;Kee,T.W.;Huang,F.;etal.Acoustic-OpticalPhononup-ConversionandHot-PhononBottleneckinLead-HalidePerov-Notesskites.Nat.Commun.2017,8,1−9.Theauthorsdeclarenocompetingfinancialinterest.(15)Wen,Y.C.;Chen,C.Y.;Shen,C.H.;Gwo,S.;Sun,C.K.UltrafastCarrierThermalizationinInN.Appl.Phys.Lett.2006,89,■232114.ACKNOWLEDGMENTS(16)Price,M.B.;Butkus,J.;Jellicoe,T.C.;Sadhanala,A.;Briane,TheworkofL.A.M.,E.M.H.,J.V.,H.J.B.,andB.E.ispartoftheA.;Halpert,J.E.;Broch,K.;Hodgkiss,J.M.;Friend,R.H.;Deschler,DutchResearchCouncil(NWO)andwasperformedattheF.Hot-CarrierCoolingandPhotoinducedRefractiveIndexChangesresearchinstituteAMOLF.TheworkofL.A.M.wassupportedinOrganic-InorganicLeadHalidePerovskites.Nat.Commun.2015,6,byNWOVidiGrant016.Vidi.179.005.Theauthorsthank8420.1Henk-JanBoluijtforthedesignofFigurea.Theauthorsthank(17)Chen,J.;Messing,M.E.;Zheng,K.;Pullerits,T.Cation-MaríaC.Gélvez-Ruedaforcommentingonthemanuscript.DependentHotCarrierCoolinginHalidePerovskiteNanocrystals.J.J.M.F.issupportedbyaRoyalSocietyUniversityResearchAm.Chem.Soc.2019,141(8),3532−3540.Fellowship(URF-R1-191292).Electronicstructurecalcula-(18)Shi,H.;Zhang,X.;Sun,X.;Zhang,X.StrongHot-PhonontionsusedtheImperialCollegeResearchComputingServiceBottleneckEffectinAll-InorganicPerovskiteNanocrystals.Appl.Phys.Lett.2020,116,151902.(DOI:10.14469/hpc/2232).TheworkofG.G.G.was(19)Hopper,T.R.;Gorodetsky,A.;Frost,J.M.;Müller,C.;supportedbytheEPSRCInternationalCentretoCentreLovrincic,R.;Bakulin,A.A.UltrafastIntrabandSpectroscopyofHot-GrantEP/S030638/1.CarrierCoolinginLead-HalidePerovskites.ACSEnergyLett.2018,3(9),2199−2205.■REFERENCES(20)Bretschneider,S.A.;Ivanov,I.;Wang,H.I.;Miyata,K.;Zhu,X.;Bonn,M.QuantifyingPolaronFormationandChargeCarrier(1)Richter,J.M.;Branchi,F.;ValdugadeAlmeidaCamargo,F.;CoolinginLead-IodidePerovskites.Adv.Mater.2018,30(29),Zhao,B.;Friend,R.H.;Cerullo,G.;Deschler,F.UltrafastCarrier1707312.ThermalizationinLeadIodidePerovskiteProbedwithTwo-(21)Frost,J.M.;Whalley,L.D.;Walsh,A.SlowCoolingofHotDimensionalElectronicSpectroscopy.Nat.Commun.2017,8(1),PolaronsinHalidePerovskiteSolarCells.ACSEnergyLett.2017,2376.(12),2647−2652.(2)Shah,J.UltrafastSpectroscopyofSemiconductorsandSemi-(22)Sendner,M.;Nayak,P.K.;Egger,D.A.;Beck,S.;Müller,C.;conductorNanostructures;1999.Epding,B.;Kowalsky,W.;Kronik,L.;Snaith,H.J.;Pucci,A.;etal.(3)Fu,J.;Xu,Q.;Han,G.;Wu,B.;Huan,C.H.A.;Leek,M.L.;OpticalPhononsinMethylammoniumLeadHalidePerovskitesandSum,T.C.HotCarrierCoolingMechanismsinHalidePerovskites.ImplicationsforChargeTransport.Mater.Horiz.2016,3(6),613−Nat.Commun.2017,8(1),1300.(4)Ziaja,B.;Medvedev,N.;Tkachenko,V.;Maltezopoulos,T.;620.Wurth,W.Time-ResolvedObservationofBand-GapShrinkingand(23)Price,M.B.;Butkus,J.;Jellicoe,T.C.;Sadhanala,A.;Briane,Electron-LatticeThermalizationwithinX-RayExcitedGalliumA.;Halpert,J.E.;Broch,K.;Hodgkiss,J.M.;Friend,R.H.;Deschler,Arsenide.Sci.Rep.2016,DOI:10.1038/srep18068.F.Hot-CarrierCoolingandPhotoinducedRefractiveIndexChanges(5)Polman,A.;Atwater,H.A.PhotonicDesignPrinciplesforinOrganic-InorganicLeadHalidePerovskites.Nat.Commun.2015,6,Ultrahigh-EfficiencyPhotovoltaics.Nat.Mater.2012,11,174.8420DOI:10.1038/ncomms9420.(6)Alharbi,F.H.;Kais,S.TheoreticalLimitsofPhotovoltaics(24)Li,M.;Bhaumik,S.;Goh,T.W.;Kumar,M.S.;Yantara,N.;EfficiencyandPossibleImprovementsbyIntuitiveApproachesGrätzel,M.;Mhaisalkar,S.;Mathews,N.;Sum,T.C.SlowCoolingLearnedfromPhotosynthesisandQuantumCoherence.RenewableandHighlyEfficientExtractionofHotCarriersinColloidalSustainableEnergyRev.2015,43,1073.PerovskiteNanocrystals.Nat.Commun.2017,8(1),14350.(7)Haque,M.A.;Kee,S.;Villalva,D.R.;Ong,W.L.;Baran,D.(25)Li,B.;Kawakita,Y.;Liu,Y.;Wang,M.;Matsuura,M.;Shibata,HalidePerovskites:ThermalTransportandProspectsforThermo-K.;Ohira-Kawamura,S.;Yamada,T.;Lin,S.;Nakajima,K.;etal.electricity.Adv.Sci.2020,7,1903389.PolarRotorScatteringasAtomic-LevelOriginofLowMobilityand(8)Kahmann,S.;Loi,M.A.HotCarrierSolarCellsandtheThermalConductivityofPerovskiteCH3NH3PbI3.Nat.Commun.PotentialofPerovskitesforBreakingtheShockley-QueisserLimit.J.2017,DOI:10.1038/ncomms16086.Mater.Chem.C2019,7,2471.(26)Beecher,A.N.;Semonin,O.E.;Skelton,J.M.;Frost,J.M.;(9)Fehse,R.;Tomic,S.;Adams,A.R.;Sweeney,S.J.;Ó’Reilly,E.Terban,M.W.;Zhai,H.;Alatas,A.;Owen,J.S.;Walsh,A.;Billinge,S.P.;Andreev,A.;Riechert,H.AQuantitativeStudyofRadiative,J.L.DirectObservationofDynamicSymmetryBreakingaboveRoomAuger,andDefectRelatedRecombinationProcessesin1.3-ΜmTemperatureinMethylammoniumLeadIodidePerovskite.ACSGaInNAs-BasedQuantum-WellLasers.IEEEJ.Sel.Top.QuantumEnergyLett.2016,1,880.Electron.2002,8,801.(27)Nolas,G.S.;Goldsmid,H.J.ThermalConductivityof(10)Kim,J.H.;Ko,Y.H.;Gong,S.H.;Ko,S.M.;Cho,Y.H.Semiconductors.InThermalConductivity;2006.UltrafastSinglePhotonEmittingQuantumPhotonicStructuresBased(28)Giorgi,G.;Fujisawa,J.I.;Segawa,H.;Yamashita,K.SmallonaNano-Obelisk.Sci.Rep.2013,DOI:10.1038/srep02150.PhotocarrierEffectiveMassesFeaturingAmbipolarTransportin4123https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterMethylammoniumLeadIodidePerovskite:ADensityFunctionalAnalysis.J.Phys.Chem.Lett.2013,4,4213.(29)Lim,J.W.M.;Giovanni,D.;Righetto,M.;Feng,M.;Mhaisalkar,S.G.;Mathews,N.;Sum,T.C.HotCarriersinHalidePerovskites:HowHotTruly?J.Phys.Chem.Lett.2020,11,2743.(30)Senellart,P.;Solomon,G.;White,A.High-PerformanceSemiconductorQuantum-DotSingle-PhotonSources.Nat.Nano-technol.2017,12,1026.(31)Savill,K.J.;Klug,M.T.;Milot,R.L.;Snaith,H.J.;Herz,L.M.Charge-CarrierCoolingandPolarizationMemoryLossinFor-mamidiniumTinTriiodide.J.Phys.Chem.Lett.2019,10,6038.(32)VonDerLinde,D.;Lambrich,R.DirectMeasurementofHot-ElectronRelaxationbyPicosecondSpectroscopy.Phys.Rev.Lett.1979,42,1090.(33)Zanato,D.;Balkan,N.;Ridley,B.K.;Hill,G.;Schaff,W.J.HotElectronCoolingRatesviatheEmissionofLO-PhononsinInN.Semicond.Sci.Technol.2004,19,1024.(34)Kawai,H.;Giorgi,G.;Marini,A.;Yamashita,K.TheMechanismofSlowHot-HoleCoolinginLead-IodidePerovskite:First-PrinciplesCalculationonCarrierLifetimefromElectron−PhononInteraction.NanoLett.2015,15(5),3103−3108.(35)Walsh,A.;elds22;Brivio,F.;Frost,J.M.WMD-Group/Hybrid-Perovskites:Collection1;2019.(36)Leguy,A.M.A.;Goñi,A.R.;Frost,J.M.;Skelton,J.;Brivio,F.;Rodríguez-Martínez,X.;Weber,O.J.;Pallipurath,A.;Alonso,M.I.;Campoy-Quiles,M.;etal.DynamicDisorder,PhononLifetimes,andtheAssignmentofModestotheVibrationalSpectraofMethyl-ammoniumLeadHalidePerovskites.Phys.Chem.Chem.Phys.2016,18(39),27051−27066.(37)Guo,P.;Xia,Y.;Gong,J.;Cao,D.H.;Li,X.;Li,X.;Zhang,Q.;Stoumpos,C.C.;Kirschner,M.S.;Wen,H.;etal.DirectObservationofBandgapOscillationsInducedbyOpticalPhononsinHybridLeadIodidePerovskites.Adv.Funct.Mater.2020,30(22),1907982.(38)Park,M.;Neukirch,A.J.;Reyes-Lillo,S.E.;Lai,M.;Ellis,S.R.;Dietze,D.;Neaton,J.B.;Yang,P.;Tretiak,S.;Mathies,R.A.Excited-StateVibrationalDynamicstowardthePolaroninMethylammoniumLeadIodidePerovskite.Nat.Commun.2018,9(1),2525DOI:10.1038/s41467-018-04946-7.(39)Giustino,F.Electron-PhononInteractionsfromFirstPrinciples.Rev.Mod.Phys.2017,89(1),015003DOI:10.1103/RevMod-Phys.89.015003.(40)Frost,J.M.CalculatingPolaronMobilityinHalidePerovskites.Phys.Rev.B:Condens.MatterMater.Phys.2017,96(19),195202DOI:10.1103/PhysRevB.96.195202.(41)Francisco-López,A.;Charles,B.;Weber,O.J.;Alonso,M.I.;Garriga,M.;Campoy-Quiles,M.;Weller,M.T.;Goñi,A.R.Pressure-InducedLockingofMethylammoniumCationsversusAmorphizationinHybridLeadIodidePerovskites.J.Phys.Chem.C2018,122(38),22073−22082.(42)Monahan,D.M.;Guo,L.;Lin,J.;Dou,L.;Yang,P.;Fleming,G.R.Room-TemperatureCoherentOpticalPhononin2DElectronicSpectraofCH3NH3PbI3PerovskiteasaPossibleCoolingBottle-neck.J.Phys.Chem.Lett.2017,8,3211.(43)Gold-Parker,A.;Gehring,P.M.;Skelton,J.M.;Smith,I.C.;Parshall,D.;Frost,J.M.;Karunadasa,H.I.;Walsh,A.;Toney,M.F.AcousticPhononLifetimesLimitThermalTransportinMethyl-ammoniumLeadIodide.Proc.Natl.Acad.Sci.U.S.A.2018,115,11905.(44)Pisoni,A.;Jacimović,J.;Bariśič,O.S.;Spina,M.;Gaál,R.;́Forró,L.;Horváth,E.Ultra-LowThermalConductivityinOrganic−InorganicHybridPerovskiteCH3NH3PbI3.J.Phys.Chem.Lett.2014,5(14),2488−2492.4124https://doi.org/10.1021/acs.jpclett.1c00676J.Phys.Chem.Lett.2021,12,4118−4124

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭