高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2

高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2

ID:8140525

大小:66.51 KB

页数:4页

时间:2018-03-07

高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2_第1页
高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2_第2页
高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2_第3页
高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2_第4页
资源描述:

《高中数学第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理互动课堂学案苏教版选修1_2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、苏教版高中数学选修1_2互动课堂学案2.1.1合情推理互动课堂疏导引导1.归纳推理是从个别事实中概括出一般原理的一种推理模式.归纳推理包括不完全归纳法和完全归纳法.磁率归纳推理有以下几个特点:(1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围;(2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测的性质;(3)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或实验的基础上的.由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对于科学的发现却是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有

2、规律性的说法,仍是科学研究的最基本的方法之一.2.运用归纳推理的一般步骤:首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);最后,对所得出的一般性命题进行检验.在数学上,检验的标准是否能进行严格的证明.3.类比推理(以下简称类比)是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.4.类比推理有以下几个特点:(1)类比是从人们已经掌握了的事物的属性,推测正在研究中的事物的属性,它以原有认识作基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特

3、殊属性;(3)类比的结果是猜测性的,不一定可靠,但它却具有发现的功能.5.在运用类比推理时,其一般步骤为:首先,找出两类对象之间可以确切表述的相似性(或一致性);然后,用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;最后,检验这个猜想.疑难疏引两个系统可作类比的前提是,它们各自的部分之间在其可以清楚定义的一些关系上一致,因此,类比的关键是能把两个系统之间的某种一致性(相似性)确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚,这不同于比喻.6.两种推理的区别与联系数学真理知识的发现、发掘和推陈出新,离不开对特殊实例的观察、分析、归纳、抽象概括和运用探索性推理

4、等过程.归纳推理和类比推理常常被认为是发现数学真理的重要方法,前者是从特殊过渡到一般的思想方法,后者是由此及彼及由彼及此的联想方法.两种推理的思维过程可概括为:从具体问题出发→观察、分析、比较、联想↓提出猜想←归纳、类比浏览中外数学史,可发现许多有深远意义的极为重要的数学知识都是通过归纳与类比发掘出来的.杰出的数学家欧拉、高斯等人都是运用归纳与类比的大师.归纳和类比离不开观察、分析、对比、联想,因此,在数学教学中加强这方面有趣而生动的训练,有助于培养我们的观察能力、分析能力、联想能力和创新能力.案例做下面的实验假设若干杯甜度相同的糖水,经过下面的操作后,糖水的甜度(浓度)是否改变?苏

5、教版高中数学选修1_2互动课堂学案(1)①将所有杯中的糖水倒在一起;②将任意多杯糖水倒在一起.(2)将某一杯水中再加入一小匙糖,糖全都溶化.类比这一实验,你能得到数学上怎样的关系式?【探究】(1)上述实验结果表明,将任意多杯甜度相同的糖水倒在一起后,糖水甜度不变,据此类比,若将,,…,看作倒前糖水浓度,则倒后甜水的甜度为.即由=…=,可得===…=(b+d+…+n≠0)(2)设某一杯浓度为,加入糖的质量为m(m>0).因糖全部溶解后的浓度为,因糖水变甜,故可得到(a>b,m>0)答案:(1)得到数学上的等比定理,若==…=,则===…=,(b+d+…+n≠0)(2)得到不等式,若a、

6、b均为正数,且a>b,m为正数(m>0)则.规律总结1.合情推理主要包括归纳推理和类比推理.在数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想活学巧用例1在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,……由此猜想凸n边形有几条对角线?解:凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条;……于是猜想凸n边形的对角线条数比凸n-1边形多n-2条对

7、角线.由此凸n边形对角线条数为2+3+4+5+…+(n-2)=(n-3)(n≥4,n∈N*).例2意大利数学家斐波那契(L.Fibonacci)在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:苏教版高中数学选修1_2互动课堂学案1,1,2,3,5

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。