欢迎来到天天文库
浏览记录
ID:811247
大小:5.56 MB
页数:131页
时间:2017-09-06
《2014新编人教a高中数学选修1-1全册教案导学案含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教版高中数学选修1-1全册教案基因详解目录1.1.1命题及其关系1.1.2双曲线的几何性质1.1.3双曲线及其标准方程1.2.1充分条件与必要条件1.2.2充要条件1.3.1且1.3.2或1.3.3非2.1.1椭圆及其标准方程2.1.2椭圆的简单几何性质2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质3.1.1变化率问题3.1.2导数的概念教案3.1.3导数的几何意义3.2.1几个常用函数导数3.2.2基本初等函数的导数公式及导数的运算法则3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最值与导数3.4生活中的优化问题
2、举例人教A版高中数学选修1-1教案导学案1.1.1命题及其关系一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、新课内容:1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,哪些是命题.②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposition).上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下
3、列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:三、练习:教材P4 1、2、3 四、作业:1、教材P8第1题2、作业本1-10五、课后反思命题教案课题1.1.1命题及其关系(一)课型新授课教学目标1)知识方法目标了解命题的概念,2)能力目标第129页共131页人教A版高中数学选修1-
4、1教案导学案会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1.课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.2.问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1.命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).上述6个语句中,(1)(2)(4)(5)(6)是命题.
5、②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若,则”的形式:①例1中的(2)就是一个“若,
6、则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成“若,则”的形式.③例2:将下列命题改写成“若,则”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若,则”的形式,为后续的学习打好基础。第129页共131页人教A版高中数学选修1-1教案导学案(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3.小结:命题概念的理解,会判断一个
7、命题的真假,并会将命题改写“若,则”的形式.3.练习提高1.练习:教材P4 1、2、3 师生互动4.作业设计作业:1、教材P8第1题2、作业本1-105.课后反思本节课是一堂概念课,比较枯燥,在教学时应充分调动学生的积极性,比如引例中的“他是个高个子.”例1中的“(7)明天下雨.”等比较有趣的生活问题,和学生有充分的语言交流,在一问一答中,引导学生完成本节课的学习。第129页共131页人教A版高中数学选修1-1教案导学案1.1.2双曲线的几何性质课前预习学案一、预习目标理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计
8、双曲线的形状特征.二、预习内容1、双曲线的几何性质及初步运用.类比椭圆的几何性质.2.双曲线的
此文档下载收益归作者所有