欢迎来到天天文库
浏览记录
ID:8091842
大小:49.41 KB
页数:13页
时间:2018-03-05
《勾股定理课后反思》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、勾股定理课后反思时光稍纵即逝,转眼间一个新的学期又要结束了,回顾已逝的教学时光,可谓百味俱全,其间有一节课我上得最投入、最值得回忆与反思。记得那是期末的展示汇报课,我当时很有压力,晚上也难以入睡.我选的是《勾股定理》一课。为了上好这节课,我反复研究了去洋思学习的一些记录,努力用新理念新手段来打造我的这节课。当我满怀信心地上完这节课时,我心情愉悦,因为我教态自然得体,与学生合作默契,基本上获得了教学的成功。1、从生活出发的教学让学生感受到学习的快乐在勾股定理这节课中,一开始引入情景:平平湖水清可鉴,荷花半尺出水面。忽来一阵狂风急,吹倒荷花水中偃。湖面之上不复见,入秋渔翁始发现。
2、花离根二尺远,试问水深尺若干。知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。3、名题欣赏:首尾呼应,用代数方法解决几何问题。印度数学家婆什迦罗(1141-1225年)提出的荷花问题比我国的引葭赴岸问题晚了一千多年。引葭赴岸第13页问题,是我国数学经典著作《九章算术》中的一道名题。《九章算术》约成书于公元一世纪。该书的第九章,即勾股章,详细讨论了用勾股定理解决应用问题的方法。这一章的第6题,就是引葭赴岸问题,题目是:今有池一丈,葭生其中央,出
3、水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?荷花问题的解法与引葭赴岸问题一样。它的出现却足以证明,举世公认的古典数学名著《九章算术》传入了印度。《九章算术》中的勾股定理应用方面的内容,涉及范围之广,解法之精巧,都是在世界上遥遥领先的,为推动世界数学的发展作出了贡献。鼓励学生可以自己利用课余时间查阅相关资料,丰富知识。4、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道智慧爷爷出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化
4、为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。第13页5、最后介绍了勾股定理的历史,并且了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方
5、法。这就达到了新课标新理念的预定目标。通过本节课的教学,学生在勾股定理的学习中能感受数形结合和转化的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为数学实验室,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。篇二:勾股定理教学反思勾股定理整章书的内容很
6、少,就勾股定理和勾股定理的逆定理,这节课是勾股定理的第一课时,本节课主要是和学生一起探究勾股地理的认识。在教学的过程中感觉有几个方面需要转变的。一、转变师生角色,让学生自主学习。第13页由于高效课堂中教学模式需要进行学生自主讨论交流学习,在探究勾股定理的发现时分四人一小组由同学们合作探讨作图,去发现有的直角三角形的三边具有这种关系,有的直角三角形不具有这种性质。可仍然证明不了我们的猜想是否正确。之后用拼图的方法再来验证一下。让学生们拿出准备好的直角三角形和正方形,利用拼图和面积计算来证明+=(学生分组讨论。)学生展示拼图方法,课件辅助演示。新课标下要求教师个人素质越来越高,教
7、师自身要不断及时地学习学科专业知识,接受新信息,对自己及时充电、更新,而且要具有幽默艺术的语言表达能力。既要有领导者的组织指导能力,更重要的是要有被学生欣赏佩服的魅力,只有学生配合你,信任你,喜欢你,教师才能轻松驾御课堂,做到应付自如,高效率完成教学目标。教师教,学生听,教师问,学生答,教室出题,学生做的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?
此文档下载收益归作者所有