艾伯特A Tutorial on Support Vector Machines for Pattern Recognition

艾伯特A Tutorial on Support Vector Machines for Pattern Recognition

ID:7821885

大小:358.00 KB

页数:47页

时间:2018-02-26

艾伯特A Tutorial on Support Vector Machines for Pattern Recognition_第1页
艾伯特A Tutorial on Support Vector Machines for Pattern Recognition_第2页
艾伯特A Tutorial on Support Vector Machines for Pattern Recognition_第3页
艾伯特A Tutorial on Support Vector Machines for Pattern Recognition_第4页
艾伯特A Tutorial on Support Vector Machines for Pattern Recognition_第5页
资源描述:

《艾伯特A Tutorial on Support Vector Machines for Pattern Recognition》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、DataMiningandKnowledgeDiscovery,2,121–167(1998)°c1998KluwerAcademicPublishers,Boston.ManufacturedinTheNetherlands.ATutorialonSupportVectorMachinesforPatternRecognitionCHRISTOPHERJ.C.BURGESburges@lucent.comBellLaboratories,LucentTechnologiesEditor:UsamaFayyadAbstract.Thetutor

2、ialstartswithanoverviewoftheconceptsofVCdimensionandstructuralriskminimization.WethendescribelinearSupportVectorMachines(SVMs)forseparableandnon-separabledata,workingthroughanon-trivialexampleindetail.Wedescribeamechanicalanalogy,anddiscusswhenSVMsolutionsareuniqueandwhenthe

3、yareglobal.Wedescribehowsupportvectortrainingcanbepracticallyimplemented,anddiscussindetailthekernelmappingtechniquewhichisusedtoconstructSVMsolutionswhicharenonlinearinthedata.WeshowhowSupportVectormachinescanhaveverylarge(eveninfinite)VCdimensionbycomputingtheVCdimensionfor

4、homogeneouspolynomialandGaussianradialbasisfunctionkernels.WhileveryhighVCdimensionwouldnormallybodeillforgeneralizationperformance,andwhileatpresentthereexistsnotheorywhichshowsthatgoodgeneralizationperformanceisguaranteedforSVMs,thereareseveralargumentswhichsupporttheobser

5、vedhighaccuracyofSVMs,whichwereview.Resultsofsomeexperimentswhichwereinspiredbytheseargumentsarealsopresented.Wegivenumerousexamplesandproofsofmostofthekeytheorems.Thereisnewmaterial,andIhopethatthereaderwillfindthatevenoldmaterialiscastinafreshlight.Keywords:supportvectormac

6、hines,statisticallearningtheory,VCdimension,patternrecognition1.IntroductionThepurposeofthispaperistoprovideanintroductoryyetextensivetutorialonthebasicideasbehindSupportVectorMachines(SVMs).Thebooks(Vapnik,1995;Vapnik,1998)containexcellentdescriptionsofSVMs,buttheyleaveroom

7、foranaccountwhosepurposefromthestartistoteach.Althoughthesubjectcanbesaidtohavestartedinthelateseventies(Vapnik,1979),itisonlynowreceivingincreasingattention,andsothetimeappearssuitableforanintroductoryreview.Thetutorialdwellsentirelyonthepatternrecognitionproblem.Manyofthei

8、deastherecarrydirectlyovertothecasesofregressionestimationandlinearoperator

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。