资源描述:
《艾伯特A Tutorial on Support Vector Machines for Pattern Recognition》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、DataMiningandKnowledgeDiscovery,2,121–167(1998)°c1998KluwerAcademicPublishers,Boston.ManufacturedinTheNetherlands.ATutorialonSupportVectorMachinesforPatternRecognitionCHRISTOPHERJ.C.BURGESburges@lucent.comBellLaboratories,LucentTechnologiesEditor:UsamaFayyadAbstract.Thetutor
2、ialstartswithanoverviewoftheconceptsofVCdimensionandstructuralriskminimization.WethendescribelinearSupportVectorMachines(SVMs)forseparableandnon-separabledata,workingthroughanon-trivialexampleindetail.Wedescribeamechanicalanalogy,anddiscusswhenSVMsolutionsareuniqueandwhenthe
3、yareglobal.Wedescribehowsupportvectortrainingcanbepracticallyimplemented,anddiscussindetailthekernelmappingtechniquewhichisusedtoconstructSVMsolutionswhicharenonlinearinthedata.WeshowhowSupportVectormachinescanhaveverylarge(eveninfinite)VCdimensionbycomputingtheVCdimensionfor
4、homogeneouspolynomialandGaussianradialbasisfunctionkernels.WhileveryhighVCdimensionwouldnormallybodeillforgeneralizationperformance,andwhileatpresentthereexistsnotheorywhichshowsthatgoodgeneralizationperformanceisguaranteedforSVMs,thereareseveralargumentswhichsupporttheobser
5、vedhighaccuracyofSVMs,whichwereview.Resultsofsomeexperimentswhichwereinspiredbytheseargumentsarealsopresented.Wegivenumerousexamplesandproofsofmostofthekeytheorems.Thereisnewmaterial,andIhopethatthereaderwillfindthatevenoldmaterialiscastinafreshlight.Keywords:supportvectormac
6、hines,statisticallearningtheory,VCdimension,patternrecognition1.IntroductionThepurposeofthispaperistoprovideanintroductoryyetextensivetutorialonthebasicideasbehindSupportVectorMachines(SVMs).Thebooks(Vapnik,1995;Vapnik,1998)containexcellentdescriptionsofSVMs,buttheyleaveroom
7、foranaccountwhosepurposefromthestartistoteach.Althoughthesubjectcanbesaidtohavestartedinthelateseventies(Vapnik,1979),itisonlynowreceivingincreasingattention,andsothetimeappearssuitableforanintroductoryreview.Thetutorialdwellsentirelyonthepatternrecognitionproblem.Manyofthei
8、deastherecarrydirectlyovertothecasesofregressionestimationandlinearoperator