Comprehensible credit scoring models using rule extraction from support vector machines

Comprehensible credit scoring models using rule extraction from support vector machines

ID:40369122

大小:531.57 KB

页数:11页

时间:2019-08-01

Comprehensible credit scoring models using rule extraction from support vector machines_第1页
Comprehensible credit scoring models using rule extraction from support vector machines_第2页
Comprehensible credit scoring models using rule extraction from support vector machines_第3页
Comprehensible credit scoring models using rule extraction from support vector machines_第4页
Comprehensible credit scoring models using rule extraction from support vector machines_第5页
资源描述:

《Comprehensible credit scoring models using rule extraction from support vector machines》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ARTICLEINPRESSEuropeanJournalofOperationalResearchxxx(2007)xxx–xxxwww.elsevier.com/locate/ejorComprehensiblecreditscoringmodelsusingruleextractionfromsupportvectormachinesa,*b,ac,daDavidMartens,BartBaesens,TonyVanGestel,JanVanthienenaDepartmentofDeci

2、sionSciencesandInformationManagement,K.U.LeuvenNaamsestraat69,B-3000Leuven,BelgiumbSchoolofManagement,UniversityofSouthampton,HighfieldSouthampton,SO171BJ,UnitedKingdomcBaselIIModelling,RiskManagement,DexiaGroupPlaceRogier11,1210Brussels,BelgiumdDepar

3、tmentofElectricalEngineering,ESAT-SCD-SISTA,K.U.LeuvenKasteelparkArenberg10,B-3001Leuven(Heverlee),BelgiumReceived1October2005;accepted1April2006AbstractInrecentyears,supportvectormachines(SVMs)weresuccessfullyappliedtoawiderangeofapplications.Howeve

4、r,sincetheclassifierisdescribedasacomplexmathematicalfunction,itisratherincomprehensibleforhumans.Thisopacitypropertypreventsthemfrombeingusedinmanyreal-lifeapplicationswherebothaccuracyandcomprehensibilityarerequired,suchasmedicaldiagnosisandcreditri

5、skevaluation.Toovercomethislimitation,rulescanbeextractedfromthetrainedSVMthatareinterpretablebyhumansandkeepasmuchoftheaccuracyoftheSVMaspossible.Inthispaper,wewillprovideanoverviewoftherecentlyproposedruleextractiontechniquesforSVMsandintroducetwoo

6、therstakenfromtheartificialneuralnetworksdomain,beingTrepanandG-REX.Thedescribedtechniquesarecomparedusingpub-liclyavailabledatasets,suchasRipley’ssyntheticdatasetandthemulti-classirisdataset.Wewillalsolookatmedicaldiag-nosisandcreditscoringwherecompr

7、ehensibilityisakeyrequirementandevenaregulatoryrecommendation.OurexperimentsshowthattheSVMruleextractiontechniquesloseonlyasmallpercentageinperformancecomparedtoSVMsandthereforerankatthetopofcomprehensibleclassificationtechniques.Ó2006ElsevierB.V.Allr

8、ightsreserved.Keywords:Creditscoring;Classification;Supportvectormachine;Ruleextraction1.Introductionscoring[2],financialtimeseriesprediction[14],spamcategorization[9]andbraintumorclassifica-Supportvectormachinesareastate-of-thearttion[19].Thestrengthof

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。