Successive overrelaxation for support vector machines

Successive overrelaxation for support vector machines

ID:39814083

大小:149.08 KB

页数:6页

时间:2019-07-11

Successive overrelaxation for support vector machines_第1页
Successive overrelaxation for support vector machines_第2页
Successive overrelaxation for support vector machines_第3页
Successive overrelaxation for support vector machines_第4页
Successive overrelaxation for support vector machines_第5页
资源描述:

《Successive overrelaxation for support vector machines》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1032IEEETRANSACTIONSONNEURALNETWORKS,VOL.10,NO.5,SEPTEMBER1999SuccessiveOverrelaxationforSupportVectorMachinesOlviL.MangasarianandDavidR.MusicantAbstractÐSuccessiveoverrelaxation(SOR)forsymmetriclin-maximizethemarginwithrespecttoboththenormaltotheearcomplem

2、entarityproblemsandquadraticprogramsisusedseparatingplanesaswellastheirlocationusingastrategytotrainasupportvectormachine(SVM)fordiscriminatingfrom[19].betweentheelementsoftwomassivedatasets,eachwithmillionsInSectionII,westateourdiscriminationproblemasaclas

3、-ofpoints.BecauseSORhandlesonepointatatime,similartoPlatt'ssequentialminimaloptimization(SMO)algorithmwhichsicalsupportvectormachine(SVM)problem(1)andintroducelighthandlestwoconstraintsatatimeandJoachims'SVMwhichourvariantoftheproblem(4)thatallowsustostatei

4、tsdual(6)handlesasmallnumberofpointsatatime,SORcanprocessveryasanSOR-solvableconvexquadraticprogramwithbounds.largedatasetsthatneednotresideinmemory.ThealgorithmWeshowinPropositionII.1thatbothproblemsyieldtheconvergeslinearlytoasolution.Encouragingnumerical

5、resultssameanswerunderfairlybroadconditions.InSectionIII,wearepresentedondatasetswithupto10000000points.Suchmas-sivediscriminationproblemscannotbeprocessedbyconventionalstateourSORalgorithmandestablishitslinearconvergencelinearorquadraticprogrammingmethods,

6、andtoourknowledgeusingapowerfulresultofLuoandTseng[3,Proposition3.5].havenotbeensolvedbyothermethods.Onsmallerproblems,InSectionIV,wegivenumericalresultsforproblemswithlightSORwasfasterthanSVMandcomparableorfasterthandatasetswithasmanyas10000000points.Secti

7、onVdrawsSMO.someconclusionsandpointsoutfuturedirectionssuchasIndexTermsÐMassivedatadiscrimination,successiveoverre-parallelSORimplementationsthatmayleadtothesolutionlaxation,supportvectormachines.ofevenlargerproblems.Awordaboutournotation.Allvectorswillbeco

8、lumnvec-I.INTRODUCTIONtorsunlesstransposedtoarowvectorbyaprimesuperscriptUCCESSIVEoverrelaxation(SOR),originallydevelopedForavectorinthe-dimensionalrealspacetheplusSforthesolutionoflargesystemsoflinear

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。