欢迎来到天天文库
浏览记录
ID:39814083
大小:149.08 KB
页数:6页
时间:2019-07-11
《Successive overrelaxation for support vector machines》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1032IEEETRANSACTIONSONNEURALNETWORKS,VOL.10,NO.5,SEPTEMBER1999SuccessiveOverrelaxationforSupportVectorMachinesOlviL.MangasarianandDavidR.MusicantAbstractÐSuccessiveoverrelaxation(SOR)forsymmetriclin-maximizethemarginwithrespecttoboththenormaltotheearcomplem
2、entarityproblemsandquadraticprogramsisusedseparatingplanesaswellastheirlocationusingastrategytotrainasupportvectormachine(SVM)fordiscriminatingfrom[19].betweentheelementsoftwomassivedatasets,eachwithmillionsInSectionII,westateourdiscriminationproblemasaclas
3、-ofpoints.BecauseSORhandlesonepointatatime,similartoPlatt'ssequentialminimaloptimization(SMO)algorithmwhichsicalsupportvectormachine(SVM)problem(1)andintroducelighthandlestwoconstraintsatatimeandJoachims'SVMwhichourvariantoftheproblem(4)thatallowsustostatei
4、tsdual(6)handlesasmallnumberofpointsatatime,SORcanprocessveryasanSOR-solvableconvexquadraticprogramwithbounds.largedatasetsthatneednotresideinmemory.ThealgorithmWeshowinPropositionII.1thatbothproblemsyieldtheconvergeslinearlytoasolution.Encouragingnumerical
5、resultssameanswerunderfairlybroadconditions.InSectionIII,wearepresentedondatasetswithupto10000000points.Suchmas-sivediscriminationproblemscannotbeprocessedbyconventionalstateourSORalgorithmandestablishitslinearconvergencelinearorquadraticprogrammingmethods,
6、andtoourknowledgeusingapowerfulresultofLuoandTseng[3,Proposition3.5].havenotbeensolvedbyothermethods.Onsmallerproblems,InSectionIV,wegivenumericalresultsforproblemswithlightSORwasfasterthanSVMandcomparableorfasterthandatasetswithasmanyas10000000points.Secti
7、onVdrawsSMO.someconclusionsandpointsoutfuturedirectionssuchasIndexTermsÐMassivedatadiscrimination,successiveoverre-parallelSORimplementationsthatmayleadtothesolutionlaxation,supportvectormachines.ofevenlargerproblems.Awordaboutournotation.Allvectorswillbeco
8、lumnvec-I.INTRODUCTIONtorsunlesstransposedtoarowvectorbyaprimesuperscriptUCCESSIVEoverrelaxation(SOR),originallydevelopedForavectorinthe-dimensionalrealspacetheplusSforthesolutionoflargesystemsoflinear
此文档下载收益归作者所有