欢迎来到天天文库
浏览记录
ID:751605
大小:3.59 MB
页数:31页
时间:2017-09-03
《手性和不对称催化问题研究毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浙江理工大学硕士学位论文手性和不对称催化问题研究毕业论文第一章文献综述1.1引言1.1.1手性和不对称催化手性chirality是指某些物质分子与其镜像虽然像左手、右手一样相似,但是不能重叠的特征。手性化合物在医药、食品、农药、香料、材料科学等领域中有着重要应用。生物体内的重要分子(如DNA、蛋白质等)都是有手性的,体内酶催化的反应都是立体专一性反应。而不同对映体的药物分子,有可能药效功能也不一样,例如左旋吗啡有明显的镇痛药效,右旋吗啡却没有;奥沙西泮右旋体的活性和毒性比左旋体强;右旋佐匹克隆药效好,左旋佐匹克隆则毒副作用相对较强[1
2、];左旋的(S)-奥美拉唑比消旋体具有更好的临床治疗效果等等[2]。因而,1992年3月美国FDA颁布的手性药物指导原则,含手性因素的化学药物必须被说明两个对映体在体内的不同生理活性、药理作用、代谢过程和药物动力学情况[3]。因此,手性对于自然界和人类具有十分重要的意义[4]。不对称催化(asymmetriccatalysis)是利用手性催化剂催化化学反应,使非手性的底物分子生成手性化合物的方法。不对称合成尤其是不对称催化合成已毫无疑义地成为现今获得手性化合物最重要的途径。因此,2001的诺贝尔奖授予了不对称催化技术的开发与应用[5]
3、。1.1.2有机小分子催化剂德国化学家Langenback于1932年提出了“organocatalyst”的概念[6]。不对称有机催化(asymmetricorganocatalysis)是指通过加入不含金属的亚化学计量的有机化合物来催化不对称化学反应的进行[7]。与金属有机催化剂不同,有机小分子催化剂是一类不含金属离子或金属离子不参与催化循环的有机化合物,分子中一般含有氮、磷等富电子中心或氨基、羟基等活性官能团,能与反应物通过化学键、氢键、静电或范德华力等作用形成活化中间体或过渡态[8-11],同时利用本身的结构因素来控制产物的立
4、体选择性。早在1904年,Marckwald[12]31浙江理工大学硕士学位论文等报道了首例有机小分子催化的不对称反应,即用番木鳖碱不对称催化的丙二酸脱羧,得到了具有10%ee值的产物。虽然有机分子很早就被用来作催化剂,但是不对称有机小分子催化在最近十年才不断发展起来并引起人们的关注。手性过渡金属催化剂催化价格昂贵,易产生污染,催化剂难回收,稳定性差。相比于金属催化剂,有机小分子催化剂具有容易制备、反应条件温和、稳定性好等优点。不对称有机小分子催化剂的研究发展已成为当代有机化学中最有挑战性和研究价值的领域之一[13-15]。最近几年发
5、展了很多有机小分子催化剂,包括脯氨酸及其衍生物、其它氨基酸和短肽、金鸡纳生物碱、联萘类化合物、卡宾以及TADDOL衍生物等[16-23]。可以催化不对称羟醛缩合反应、不对称Mannich反应、不对称Diels-Alder反应及不对称Michael反应等许多不同的反应[16-19]。其中金鸡纳生物碱及其衍生物具有特殊的刚性结构以及不对称氨基醇边链,是生物碱不对称有机催化剂中的典型代表,是多功能的的有机催化剂,在不对称合成领域,尤其是作为有机小分子催化剂,表现出了良好的催化效果[24-25]。1.2金鸡纳生物碱有机催化的不对称Michae
6、l反应Michael加成反应是最重要的的构建碳-碳键的途径之一。通过Michael反应能合成多种官能团化的碳骨架[26-27],在药物合成化学和有机化学中具有重要意义。近年来,有机催化的不对称Michael加成,尤其是金鸡纳生物碱及其衍生物催化的不对称Michael加成反应的催化效率、底物范围和应用都有了较大进展[23-25,27]。早期以金鸡纳生物碱作为手性有机催化剂的反应被报道以后[28-30],它们在有机合成化学中的有机催化作用并未得到了广泛关注。Wynberg和Helder[31-33]在一些β-酮酯对甲基乙烯基酮的加成反应中
7、使用了奎宁作为催化剂,然而反应的对映选择性未经测定。而2000年,List和MacMillan的文章报道以后[16,34],有机催化作为催化领域的分支才开始复兴,由此也引起了研究金鸡纳生物碱类有机催化剂的高潮。经过发展,金鸡纳生物碱及其衍生物已经被认为是不对称Michael反应中高效率的双功能有机催化剂[35]。除了可以得到优异的化学产率和对映选择性外,其作为无金属催化反应,在实际操作中具有众多优点:例如温和的反应条件、不对空气和水分敏感等等。金鸡纳生物碱类化合物含有通过C-9立体中心连接起来的一个喹啉结构和一个取代的奎宁环。四种天然
8、金鸡纳生物碱都包含5个手性中心,奎宁(1)和奎尼啶(2),或者辛可尼啶(3)和辛可宁(4)的差向异构体,差别仅在于C-8和C-9位构型的不同(图1.1)。31浙江理工大学硕士学位论文图1.1奎宁(1)和奎尼啶(2),或者
此文档下载收益归作者所有