recursive macroeconomic theory time series

recursive macroeconomic theory time series

ID:7511077

大小:600.86 KB

页数:74页

时间:2018-02-16

recursive macroeconomic theory time series_第1页
recursive macroeconomic theory time series_第2页
recursive macroeconomic theory time series_第3页
recursive macroeconomic theory time series_第4页
recursive macroeconomic theory time series_第5页
资源描述:

《recursive macroeconomic theory time series》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter2TimeSeries2.1.TwoworkhorsesThischapterdescribestwotractablemodelsoftimeseries:Markovchainsandfirst-orderstochasticlineardifferenceequations.Thesemodelsareorganizingdevicesthatputrestrictionsonasequenceofrandomvectors.Theyareusefulbecausetheydescribeatimeserieswithparsimony.Inlaterchapters

2、,weshallmaketwouseseachofMarkovchainsandstochasticlineardifferenceequations:(1)torepresenttheexogenousinformationflowsimpingingonanagentoraneconomy,and(2)torepresentanoptimumorequilibriumoutcomeofagents’decisionmaking.TheMarkovchainandthefirst-orderstochasticlineardiffer-encebothuseasharpnotionofas

3、tatevector.Astatevectorsummarizestheinformationaboutthecurrentpositionofasystemthatisrelevantfordetermin-ingitsfuture.TheMarkovchainandthestochasticlineardifferenceequationwillbeusefultoolsforstudyingdynamicoptimizationproblems.2.2.MarkovchainsAstochasticprocessisasequenceofrandomvectors.Forus,t

4、hesequencewillbeorderedbyatimeindex,takentobetheintegersinthisbook.Sowestudydiscretetimemodels.Westudyadiscrete-statestochasticprocesswiththefollowingproperty:MarkovProperty:Astochasticprocess{xt}issaidtohavetheMarkovpropertyifforallk≥1andallt,Prob(xt+1

5、xt,xt−1,...,xt−k)=Prob(xt+1

6、xt).Weassumet

7、heMarkovpropertyandcharacterizetheprocessbyaMarkovchain.Atime-invariantMarkovchainisdefinedbyatripleofobjects,namely,–29–30TimeSeriesann-dimensionalstatespaceconsistingofvectorsei,i=1,...,n,whereeiisann×1unitvectorwhoseithentryis1andallotherentriesarezero;ann×ntransitionmatrixP,whichrecordsthepr

8、obabilitiesofmovingfromonevalueofthestatetoanotherinoneperiod;andan(n×1)vectorπ0whoseithelementistheprobabilityofbeinginstateiattime0:π0i=Prob(x0=ei).TheelementsofmatrixParePij=Prob(xt+1=ej

9、xt=ei).Fortheseinterpretationstobevalid,thematrixPandthevectorπ0mustsatisfythefollowingassumption:Assumpt

10、ionM:a.Fori=1,...,n,thematrixPsatisfiesnPij=1.(2.2.1)j=1b.Thevectorπ0satisfiesnπ0i=1.i=1AmatrixPthatsatisfiesproperty(2.2.1)iscalledastochasticmatrix.Astochasticmatrixdefinestheprobabilitiesofmovingfromonevalueofthestatetoanotherino

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。