recursive macroeconomic theory dynamic programming

recursive macroeconomic theory dynamic programming

ID:7291736

大小:185.33 KB

页数:10页

时间:2018-02-10

recursive macroeconomic theory dynamic programming_第1页
recursive macroeconomic theory dynamic programming_第2页
recursive macroeconomic theory dynamic programming_第3页
recursive macroeconomic theory dynamic programming_第4页
recursive macroeconomic theory dynamic programming_第5页
资源描述:

《recursive macroeconomic theory dynamic programming》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter3DynamicProgrammingThischapterintroducesbasicideasandmethodsofdynamicprogramming.1Itsetsoutthebasicelementsofarecursiveoptimizationproblem,describesakeyfunctionalequationcalledtheBellmanequation,presentsthreemethodsforsolvingtheBellmanequation,andgivestheBenvenis

2、te-Scheinkmanformulaforthederivativeoftheoptimalvaluefunction.Let’sdivein.3.1.SequentialproblemsLetβ∈(0,1)beadiscountfactor.Wewanttochooseaninfinitesequenceof“controls”{u}∞tomaximizett=0∞βtr(x,u),(3.1.1)ttt=0nsubjecttoxt+1=g(xt,ut),withx0∈IRgiven.Weassumethatr(xt,ut)kis

3、aconcavefunctionandthattheset{(xt+1,xt):xt+1≤g(xt,ut),ut∈IR}isconvexandcompact.Dynamicprogrammingseeksatime-invariantpolicyfunctionhmappingthestatextintothecontrolut,suchthatthesequence{u}∞generatedbyiteratingthetwofunctionsss=0ut=h(xt)(3.1.2)xt+1=g(xt,ut),startingfromi

4、nitialconditionx0att=0,solvestheoriginalproblem.Asolutionintheformofequations(3.1.2)issaidtoberecursive.TofindthepolicyfunctionhweneedtoknowanotherfunctionV(x)thatexpressestheoptimalvalueoftheoriginalproblem,startingfromanarbitraryinitialconditionx∈X.Thisiscalledthevalue

5、function.Inparticular,define∞V(x)=maxβtr(x,u),(3.1.3)0tt{us}∞s=0t=01Thischapteraimstothereadertostartusingthemethodsquickly.Wehopetopromotedemandforfurtherandmorerigorousstudyofthesubject.InparticularseeBertsekas(1976),BertsekasandShreve(1978),StokeyandLucas(withPrescot

6、t)(1989),Bellman(1957),andChow(1981).ThischaptercoversmuchofthesamematerialasSargent(1987b,chapter1).–103–104DynamicProgrammingwhereagainthemaximizationissubjecttoxt+1=g(xt,ut),withx0given.Ofcourse,wecannotpossiblyexpecttoknowV(x0)untilafterwehavesolvedtheproblem,butlet

7、’sproceedonfaith.IfweknewV(x0),thenthepolicyfunctionhcouldbecomputedbysolvingforeachx∈Xtheproblemmax{r(x,u)+βV(˜x)},(3.1.4)uwherethemaximizationissubjectto˜x=g(x,u)withxgiven,and˜xdenotesthestatenextperiod.Thus,wehaveexchangedtheoriginalproblemoffindinganinfinitesequenceo

8、fcontrolsthatmaximizesexpression(3.1.1)fortheprob-lemoffindingtheoptimalvaluefunctionV(x)andafunctionhthatsolve

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。