deriving water fraction and flood maps from modis images using a decision tree approach

deriving water fraction and flood maps from modis images using a decision tree approach

ID:7288571

大小:2.44 MB

页数:12页

时间:2018-02-10

deriving water fraction and flood maps from modis images using a decision tree approach_第1页
deriving water fraction and flood maps from modis images using a decision tree approach_第2页
deriving water fraction and flood maps from modis images using a decision tree approach_第3页
deriving water fraction and flood maps from modis images using a decision tree approach_第4页
deriving water fraction and flood maps from modis images using a decision tree approach_第5页
资源描述:

《deriving water fraction and flood maps from modis images using a decision tree approach》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、814IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONSANDREMOTESENSING,VOL.4,NO.4,DECEMBER2011DerivingWaterFractionandFloodMapsFromMODISImagesUsingaDecisionTreeApproachDonglianSun,YunyueYu,andMitchellD.GoldbergAbstract—Thisstudyinvestigateshowtoderivewaterfractionsurface[1].Allofthevisiblean

2、dinfraredinstrumentsarepas-andfloodmappingfromtheModerate-ResolutionImagingSpec-sivesensors,suchastheMulti-SpectralScanner(MSS),Landsattroradiometer(MODIS)onboardtheEarthObservingSystemThematicMapper(TM),theAdvancedVeryHighResolution(EOS)satellitesusingthelinearmixturemodelanddecision-treeRadio

3、meter(AVHRR),theSatellitePourl’Observationdelaapproach.TherecentfloodsintheMidwesternUnitedStatesinJune2008andintheNewOrleansareainAugust2005werese-Terre(SPOT)andtheAdvancedSpaceborneThermalEmis-lectedforthisstudy.MODISsurfacereflectancewiththematchedsionandReflectionRadiometer(ASTER).TheModerate

4、-Res-landcoverdataintheMidwestpriortothefloodingeventswereolutionImagingSpectroradiometer(MODIS),whichisusedinusedforthetrainingdataset,withthesplittestmodeof50%forthisstudy,alsobelongstothistypeofsensor.Microwavesen-trainingandtheremaining50%fortesting.Theprecision,orsorssuchasRADARSAT[2],anac

5、tive(radar)sensor,areexcel-accuracyrate,ofthewaterclassificationreachesover90%fromthetest.Ourresultsdemonstratethatthereflectancedifferencelenttoolsformonitoringfloodssincetheycanpenetrateclouds,(CH2–CH1)betweentheMODISchannel2(CH2)andchannel1whichusuallyoccurduringfloodperiods..Ifwithoutvegeta-(C

6、H1)isthemostusefulparametertoderivewaterfractionfromtionortrees,radarreturnsareusuallylowoverthesmoothopenthelinearmixturemodel.Rulesandthresholdvaluesfromthewatersurface.Thischaracteristicallowsfloodextentstobede-decisiontreetrainingwereappliedtorealapplicationsondifferentterminedwithgoodaccur

7、acyundermanyconditions[3]–[6].dates(June1,17,and19,2008fortheMidwesternregionoftheU.S.)andatdifferentlocations(NewOrleansin2005)toidentifyHowever,turbulence,wind-inducedwaves,orvegetationand/orstandingwaterandtocalculatewaterfraction.Th

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。