how to calculate the eigenvaalues of self-adjoint matrices

how to calculate the eigenvaalues of self-adjoint matrices

ID:7288565

大小:1.35 MB

页数:116页

时间:2018-02-10

how to calculate the eigenvaalues of self-adjoint matrices_第1页
how to calculate the eigenvaalues of self-adjoint matrices_第2页
how to calculate the eigenvaalues of self-adjoint matrices_第3页
how to calculate the eigenvaalues of self-adjoint matrices_第4页
how to calculate the eigenvaalues of self-adjoint matrices_第5页
资源描述:

《how to calculate the eigenvaalues of self-adjoint matrices》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、CHAPTER18HowtoCalculatetheEigenvaluesofSelf-AdjointMatrices1.Thebasisofoneofthemosteffectivemethodsforcalculatingapproximatelytheeigenvaluesofaself-adjointmatrixisbasedontheQRdecomposition.Theorem1.EveryrealinvertiblesquarematrixAcanbefactoredasA=QR,(1)w

2、hereQisanorthogonalmatrixandRisanuppertriangularmatrixwhosediagonalentriesarepositive.Proof.ThecolumnsofQareconstructedoutofthecolumnsofAbyGram-Schmidtorthonormalization.SothejthcolumnqjofQisalinearcombinationofthefirstjcolumnsa1,...,ajofA:qt=cllal,q2=cl

3、2at+c22a2,etc.Wecaninverttherelationbetweentheq-sandthea-s:al=rllgt,a2=rt2gt+r22q2,(2)an=ringi++rnngnLinearAlgebraandItsApplications,SecondEdition,byPeterD.LaxCopyrightQ2007JohnWiley&Sons,Inc.262HOWTOCALCULATETHEEIGENVALUESOFSELF-ADJOINTMATRICES263SinceA

4、isinvertible,itscolumnsarelinearlyindependent.Itfollowsthatallcoefficientsri1,...,r,in(2)arenonzero.Wemaymultiplyanyofthevectorsqjby-1,withoutaffectingtheirorthonormality.Inthiswaywecanmakeallthecoefficientsri1,...,r,,,,in(2)positive.HereAisannxnmatrix,D

5、enotethematrixwhosecolumnsareqi,...,qbyQ,anddenotebyRthematrixforij.Relation(2)canbewrittenasamatrixproductA=QR.SincethecolumnsofQareorthonormal,Qisanorthogonalmatrix.Itfollowsfromthedefinition(3)ofRthatRisuppertriangular.SoA=QRisthesought-aft

6、erfactorization(1).Thefactorization(1)canbeusedtosolvethesystemofequationsAx=u.ReplaceAbyitsfactoredform,QRx=uandmultiplybyQTontheleft.SinceQisanorthogonalmatrix,QTQ=1,andwegetRx=QTu.(4)SinceRisuppertriangularanditsdiagonalentriesarenonzero,thesystemofeq

7、uationscanbesolvedrecursively,startingwiththenthequationtodeterminex,,,thenthe(n-1)stequationtodetermineandsoallthewaydowntoxi.InthischapterweshallshowhowtousetheQRfactorizationofarealsymmetricmatrixAtofinditseigenvalue.TheQRalgorithmwasinventedbyJ.G.F.F

8、rancisin1961;itgoesasfollows:LetAbearealsymmetricmatrix;wemayassumethatAisinvertible,forwemayaddaconstantmultipleoftheidentitytoA.FindtheQRfactorizationofA:A=QR.DefineAIbyswitchingthefactorsQandRAi=RQ.(5)264LINEARALGEBRAAN

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。