rational functions and matrices

rational functions and matrices

ID:30169968

大小:440.99 KB

页数:56页

时间:2018-12-27

rational functions and matrices_第1页
rational functions and matrices_第2页
rational functions and matrices_第3页
rational functions and matrices_第4页
rational functions and matrices_第5页
资源描述:

《rational functions and matrices》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2RationalFunctionsandMatrices2.1BasicDefinitionsandOperationsonRationalFunctionsAquotientoftwopolynomialsl(s)andm(s)invariables,wherem(s)isanonzeropolynomial,ls()ws()=(2.1.1)ms()iscalledarationalfunctionofthevariables.Thesetofrationalfunctionswithcoefficientsfromafieldwillbedenotedby(s).Afieldca

2、nbethefieldofrealnumbers,ofthecomplexnumbers,oftherationalnumbers,orafieldofrationalfunctionsofanothervariablez,etc.Wesaythatrationalfunctionsls()ls()12ws()==,ws()(2.1.2)12ms()ms()12belongtothesameequivalenceclassifandonlyiflsmslsms()()=()().(2.1.3)1221Letl1(s)=a(s)l1(s)andm1(s)=a(s)m1(s),wherea

3、(s)isagreatestcommondivisorofl1(s)andm1(s).Thenasls()()11ls()ws()==,1asmsms()()()11108PolynomialandRationalMatriceswherel1(s)andm1(s)arerelativelyprime.Thustherationalfunction(2.1.1)representsthewholeequivalenceclass.Wesaythattherationalfunction(2.1.1)isofstandardformifandonlyifthepolynomialsl(s

4、)andm(s)arerelativelyprimeandthepolynomialm(s)ismonic(i.e.,apolynomialinwhichthecoefficientatthehighestpowerofthevariablesis1).Zerosofthenumeratorpolynomiall(s)arecalledfinitezeros(shortlyzeros),andzerosofthedenominatorpolynomialm(s)arecalledfinitepoles(shortlypoles)oftherationalfunction(2.1.1).

5、Definition2.1.1.Anorderroftherationalfunction(2.1.1)isadifferenceofdegreesofdenominatorm(s)andnumeratorl(s).rm=-deg()deg()sls,(2.1.5)wheredegdenotesthedegreeofapolynomial.Letmm--11nnlslsls()=++...++lslm,()ssas=++...++asa.(2.1.6)mm--110n110Ifthepolynomials(2.1.6)areanumeratoranddenominator,respec

6、tively,ofthefunction(2.1.1),thentheorderofthisfunctionisequaltor=n-m.Thisfunctionhasmfinitezerosandnfinitepoles.Ifr=n-m<0,thenthisfunctionhasapoleofmultiplicityr(s=Ñ)atinfinityandifr=n-m>0,thenthisfunctionhasazeroofmultiplicityr(s=Ñ)atinfinity.Definition2.1.2.Therationalfunction(2.1.1)iscalledpr

7、oper(orcausal)ifandonlyifitsorderisnonnegative(r=degm(s)–degl(s)í0),andstrictlyproper(orstrictlycausal)ifandonlyifitsorderispositive(r=degm(s)–degl(s)>0).Dividingthenumeratorl(s)bythedenominatorm(s),therationalfunction(2.1.1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。